Distributing the Heat Equation

Jean-Marie Madiot, Julien Herrmann jeanmarie.madiot@ens-lyon.fr julien.herrmann@ens-lyon.fr

This homework is due Sunday, December 07, 23h59, Lyon time. Send your archive to both email addresses.

1 Heat equation

The heat equation (for information, $\frac{\partial x}{\partial t} = \nabla^2 x$) is a local rule allowing one to compute the evolution of temperature of a system over time. In this homework, we will implement *average cellular automata* that behave similarly:

The first picture corresponds to a plate with a rectangular distribution of temperature, the following ones show how the temperature evolves over time, to finally converge to a uniform distribution.

2 Cellular automata

A cellular automaton is a quadruplet $\mathcal{A} = (d, Q, r, \delta)$ where

- $d \in \mathbb{N}$ is the dimension,
- Q is a set, the states,
- $r \in \mathbb{N}$ is the radius,
- $\delta: Q^{\llbracket -r,r \rrbracket^d} \to Q$ is the local rule¹.

The cellular automaton is defined on a grid of cells of \mathbb{Z}^d . Each cell has a state in Q. The local function δ is the rule to apply to get the next state of a cell, depending on its neighborhood. The global function δ^{\dagger} computes the next step for all the states of the whole grid, according to the rule δ .

To formalize this, a configuration for \mathcal{A} is an element $X \in Q^{\mathbb{Z}^d}$ and δ lifts to a global function on the set of configurations: $\delta^{\dagger} : Q^{\mathbb{Z}^d} \to Q^{\mathbb{Z}^d}$, such that δ^{\dagger} is invariant under translation each in all the *d* directions and coincides with δ at the origin (i.e. $\delta^{\dagger}(X)_{0,0,...,0} = \delta(X|_{[-r,r]^d})$).

We focus on the sequence $(X^t)_{t \in \mathbb{N}}$ where X^t is the state of the grid at time t: $X^{t+1} = \delta^{\dagger}(X^t)$. The sequence depends on its initial state X^0 .

¹When a and b are integers, [a, b] represents the set $\{a, a + 1, \dots, b\}$.

That being said, we will consider in this homework 2-dimensional periodic grids of period N in each direction, which can be thought as finite grids $\mathcal{G} = [\![0, N-1]\!]^2$, and the radius of the automata will be 1, meaning that for every cell coordinates $(i, j) \in \mathcal{G}$ we will consider as its neighborhood the set of cells of coordinates (i-1, j-1), (i, j-1), (i+1, j-1), (i, j-1), (i+1, j-1), (i+1, j-1) and we handle the edges by considering \mathcal{G} as a torus. This means that, given the values $X^t = (x_{i,j}^t)_{(i,j)\in\mathcal{G}}$ at step t, the next step $X^{t+1} = \delta^{\dagger}(X^t)$ is defined as follows:

$\boxed{(\delta^{\dagger}(X^t))_{i,j}}$	$\triangleq \delta$	~($x_{i-1,j+1}^t$	$x_{i,j+1}^t$	$x_{i+1,j+1}^t$
		δ	$x_{i-1,j}^t$	$x_{i,j}^t$	$x_{i+1,j}^t$
			$x_{i-1,j-1}^{t}$	$x_{i,j-1}^t$	$\left[x_{i+1,j-1}^{t} \right] $

Question 1. How many applications of the function δ are necessary to compute X^t on $[0, N-1]^2$?

Question 2. How would you implement this 2D cellular automaton on a network with a 2D toric grid topology? Be careful to explain where each cell of data is stored, and where the computation of its next state is performed.

Question 3. Write a distributed algorithm that computes X^{t+1} , given X^t distributed on a toric 2D grid the way you decided in the previous question. What are the time and communication costs of this algorithm? Can you adapt it to a non-toric grid? What would be the complexity on a ring topology?

3 Average automata

Definition 1. If $p \neq 0$, the p-average automaton is the cellular automaton where $Q = \mathbb{R}$ and δ is:

$$\delta\left(\begin{array}{c|c} a & b & c \\ \hline d & e & f \\ \hline g & h & i \end{array}\right) \triangleq (1-p) \cdot e + p \cdot \frac{b+d+f+h}{4}$$

In other terms, the new value of a cell is the average of the old values of cells inside its immediate neighborhood, weighed by p, and of the old value of the cell itself, weighed by 1 - p.

Question 4. In the file **average.c**, implement on a toric grid the algorithm of Question 3 for any *p*-average automata. See Section 6 for implementation details.

When X and Y are two configurations of the grid \mathcal{G} , we write X + Y the state of \mathcal{G} defined by the point-wise sum of the two states: $(X+Y)_{i,j} = X_{i,j} + Y_{i,j}$. Similarly, for every $k \in \mathbb{R}$ the state $k \cdot X$ is defined as: $(k \cdot X)_{i,j} = kX_{i,j}$. A function f is linear if $\forall X, Y, k, f(X+Y) = f(X) + f(Y)$ and $f(k \cdot X) = k \cdot f(X)$.

When computing complexity bounds, we assume that basic operations on real numbers (such as sum, product, ...) cost 1 unit of time. For the space complexity, storing one real number takes one unit of memory. Finally, we assume that sending one real number from one processor to another takes c units of time (as usual, independent communications can be performed in parallel).

Question 5. In the case of a *p*-average automaton, prove that δ^{\dagger} is linear. Use that property to derive an algorithm that, given X^0 , computes X^t in time $O(\log t)$ for a fixed N. What is the time and space complexity, in terms of both t and N? Compare to the complexity in the general case.

Question 6. Describe a distributed variant of the above algorithm on a $p \times p$ processors fully connected network. What are the new time, space, and communication costs?

Question 7 (Sparse initial conditions). Let Z be the state of the grid such that $Z_{i,j}$ is 1 when i = j = 0 and 0 otherwise, and let assume that Z^t is *already computed* and distributed on a $p \times p$ grid. Given an arbitrary sparse state X^0 of the grid (i.e., $|X^0|$, the number of non-zero cells in X^0 , is small), how can you compute X^t on the $p \times p$ fully connected grid? What are, the time/space/communication complexities in terms of N and $|X^0|$?

Question 8. In the file sparse.c, implement Question 7 on a fully connected grid: first, given t and the dimensions of Z, precompute Z^t using Question 4. Then, provide the user with an interface that lets her update X^0 by entering $(i, j, x_{i,j}^0)$ one by one, starting from $X^0 = 0$ and keep X^t updated at each new entry.

Question 9. Give some fixed points of δ^{\dagger} in $\mathbb{R}^{\mathbb{Z}^d}$ and in $\mathbb{R}^{[0,N-1]^d}$ (note that the latter is a torus).

4 Thermal reservoirs

A thermal reservoir is a thermodynamic system with constant, unalterable temperature, influencing in turn the temperature of the environment. The pictures below describe the evolution of a plate with warm thermal reservoirs on the horizontal edges and cold thermal reservoirs on the vertical edges.

We suppose now 0 . We augment <math>Q with special states: $Q = \mathbb{R} \uplus \mathcal{C}$ where \mathcal{C} a set of special states called *constants* written as C_k where k is a real number. Now the notion of average automaton is refined, so that a cell in state C_k stays in the same state forever, and is considered of temperature k by its neighbors.

Formally, we define the temperature $\theta(x)$ of a state as $\theta(x) = k$ when $x = C_k$ and $\theta(x) = x$ otherwise. The local rule becomes the following function:

$$\delta\left(\begin{array}{c|c} a & b & c \\ \hline d & e & f \\ \hline g & h & i \end{array}\right) \triangleq \begin{cases} C_k & \text{if } e = C_k \\ (1-p) \cdot \theta(e) + p \cdot \frac{\theta(b) + \theta(d) + \theta(f) + \theta(h)}{4} & \text{otherwise} \end{cases}$$

Question 10. Give an example of a fixed point with one constant, and another with two different constants. Give the limit of (X^t) , if it exists, given that X^0 has at most one constant.

Question 11. For a *p*-average automaton with constants, is δ^{\dagger} linear?

Question 12 (Bonus). Prove that the sequence (X^t) converges when X^0 has at least one constant. (We consider real-valued cells. It does not work in a discrete setting: give an counterexample of X^0 yielding a cycle with double-valued cells.)

Question 13. In the file constants.c, adapt Question 4 to the setting of Section 4.

5 Graphical implementation

Question 14. Use the display of the first processor to provide the user with a simple graphic interface, featuring a [0, 1]-valued heat map:

- for Question 8: where the interface is a black, cold map and the user can click to set some $X_{i,j}^0$ to 1.
- for Question 13: given a map of C_0 and C_1 constants, compute and display the fixed point in a distributed setting.

You can use Douglas Thain's simple X11 graphics library. http://www3.nd.edu/~dthain/courses/cse20211/fall2013/gfx/

6 Implementation details

Use the C programming language. Using any other language including C++ is likely to halve your mark.

Your programs must compile (with mpicc) and run (with mpirun) on the machines of the ENS (slsu0-01, slsu0-02 etc.). Provide a name.tar.gz archive in which you have a folder name where name is your name. Provide a makefile, such that running make at the root of name will compile everything and create all executable binaries at the root of name. Use double to represent real numbers.

Input Input data is given via standard input. Note that you can use standard input with ./myprogram and then type things manually, or with ./myprogram < file to use the file file a standard input. The format is the following:

- width of the grid on first line of standard input
- height on second line
- p on third line
- t the number of iterations on the fourth
- then, the initial grid, described as a sparse matrix on each line with its coordinates:
 - 0 i j x is input data for a value $x \in [0, 1]$ with coordinates (i, j)
 - -1 i j k is input data of a constant $k \in [0, 1]$ with coordinates (i, j)
 - -2 i j 0 is a **request** to give the value at position (i, j) after t iterations.

 \mathbf{Output} Answer to each of the 2 i j 0 requests by printing the temperature of the corresponding cell. Note that:

- in the sparse case, requests and input data can be interleaved (and constants will be ignored).
- in the other cases, the first request triggers the computation (subsequent input data will be ignored).