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This homework is due Sunday, December 07, 23h59, Lyon time. Send your archive to both email addresses.

1 Heat equation

The heat equation (for information, ∂x
∂t = ∇2x) is a local rule allowing one to compute the evolution of

temperature of a system over time. In this homework, we will implement average cellular automata that
behave similarly:

The first picture corresponds to a plate with a rectangular distribution of temperature, the following ones
show how the temperature evolves over time, to finally converge to a uniform distribution.

2 Cellular automata

A cellular automaton is a quadruplet A = (d,Q, r, δ) where

• d ∈ N is the dimension,

• Q is a set, the states,

• r ∈ N is the radius,

• δ : QJ−r,rKd → Q is the local rule1.

The cellular automaton is defined on a grid of cells of Zd. Each cell has a state in Q. The local function δ
is the rule to apply to get the next state of a cell, depending on its neighborhood. The global function δ†

computes the next step for all the states of the whole grid, according to the rule δ.

To formalize this, a configuration for A is an element X ∈ QZd

and δ lifts to a global function on the

set of configurations: δ† : QZd → QZd

, such that δ† is invariant under translation each in all the d directions
and coincides with δ at the origin (i.e. δ†(X)0,0,..,0 = δ(X|J−r,rKd)).

We focus on the sequence (Xt)t∈N where Xt is the state of the grid at time t: Xt+1 = δ†(Xt). The
sequence depends on its initial state X0.

1When a and b are integers, Ja, bK represents the set {a, a+ 1, . . . , b}.
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That being said, we will consider in this homework 2-dimensional periodic grids of period N in each
direction, which can be thought as finite grids G = J0, N − 1K2, and the radius of the automata will be 1,
meaning that for every cell coordinates (i, j) ∈ G we will consider as its neighborhood the set of cells of
coordinates (i−1, j−1), (i, j−1), (i+ 1, j−1), (i, j−1), (i, j), (i, j+ 1), (i+ 1, j−1), (i+ 1, j), (i+ 1, j+ 1)
and we handle the edges by considering G as a torus. This means that, given the values Xt = (xti,j)(i,j)∈G
at step t, the next step Xt+1 = δ†(Xt) is defined as follows:

(δ†(Xt))i,j , δ

 xti−1,j+1 xti,j+1 xti+1,j+1

xti−1,j xti,j xti+1,j

xti−1,j−1 xti,j−1 xti+1,j−1


Question 1. How many applications of the function δ are necessary to compute Xt on J0, N − 1K2?

Question 2. How would you implement this 2D cellular automaton on a network with a 2D toric grid
topology? Be careful to explain where each cell of data is stored, and where the computation of its next
state is performed.

Question 3. Write a distributed algorithm that computes Xt+1, given Xt distributed on a toric 2D grid the
way you decided in the previous question. What are the time and communication costs of this algorithm?
Can you adapt it to a non-toric grid? What would be the complexity on a ring topology?

3 Average automata

Definition 1. If p 6= 0, the p-average automaton is the cellular automaton where Q = R and δ is:

δ

 a b c
d e f
g h i

 , (1− p) · e+ p · b+ d+ f + h

4
.

In other terms, the new value of a cell is the average of the old values of cells inside its immediate neighbor-
hood, weighed by p, and of the old value of the cell itself, weighed by 1− p.

Question 4. In the file average.c, implement on a toric grid the algorithm of Question 3 for any p-average
automata. See Section 6 for implementation details.

When X and Y are two configurations of the grid G, we write X + Y the state of G defined by the
point-wise sum of the two states: (X+Y )i,j = Xi,j +Yi,j . Similarly, for every k ∈ R the state k ·X is defined
as: (k ·X)i,j = kXi,j . A function f is linear if ∀X,Y, k, f(X + Y ) = f(X) + f(Y ) and f(k ·X) = k · f(X).

When computing complexity bounds, we assume that basic operations on real numbers (such as sum,
product, ...) cost 1 unit of time. For the space complexity, storing one real number takes one unit of memory.
Finally, we assume that sending one real number from one processor to another takes c units of time (as
usual, independent communications can be performed in parallel).

Question 5. In the case of a p-average automaton, prove that δ† is linear. Use that property to derive
an algorithm that, given X0, computes Xt in time O(log t) for a fixed N . What is the time and space
complexity, in terms of both t and N? Compare to the complexity in the general case.

Question 6. Describe a distributed variant of the above algorithm on a p × p processors fully connected
network. What are the new time, space, and communication costs?

Question 7 (Sparse initial conditions). Let Z be the state of the grid such that Zi,j is 1 when i = j = 0 and
0 otherwise, and let assume that Zt is already computed and distributed on a p× p grid. Given an arbitrary
sparse state X0 of the grid (i.e., |X0|, the number of non-zero cells in X0, is small), how can you compute
Xt on the p× p fully connected grid? What are, the time/space/communication complexities in terms of N
and |X0|?
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Question 8. In the file sparse.c, implement Question 7 on a fully connected grid: first, given t and the
dimensions of Z, precompute Zt using Question 4. Then, provide the user with an interface that lets her
update X0 by entering (i, j, x0i,j) one by one, starting from X0 = 0 and keep Xt updated at each new entry.

Question 9. Give some fixed points of δ† in RZd

and in RJ0,N−1Kd (note that the latter is a torus).

4 Thermal reservoirs

A thermal reservoir is a thermodynamic system with constant, unalterable temperature, influencing in turn
the temperature of the environment. The pictures below describe the evolution of a plate with warm thermal
reservoirs on the horizontal edges and cold thermal reservoirs on the vertical edges.

We suppose now 0 < p < 1. We augment Q with special states: Q = R]C where C a set of special states
called constants written as Ck where k is a real number. Now the notion of average automaton is refined, so
that a cell in state Ck stays in the same state forever, and is considered of temperature k by its neighbors.

Formally, we define the temperature θ(x) of a state as θ(x) = k when x = Ck and θ(x) = x otherwise.
The local rule becomes the following function:

δ

 a b c
d e f
g h i

 ,

{
Ck if e = Ck ,

(1− p) · θ(e) + p · θ(b)+θ(d)+θ(f)+θ(h)4 otherwise .

Question 10. Give an example of a fixed point with one constant, and another with two different constants.
Give the limit of (Xt), if it exists, given that X0 has at most one constant.

Question 11. For a p-average automaton with constants, is δ† linear?

Question 12 (Bonus). Prove that the sequence (Xt) converges when X0 has at least one constant. (We
consider real-valued cells. It does not work in a discrete setting: give an counterexample of X0 yielding a
cycle with double-valued cells.)

Question 13. In the file constants.c, adapt Question 4 to the setting of Section 4.

5 Graphical implementation

Question 14. Use the display of the first processor to provide the user with a simple graphic interface,
featuring a [0, 1]-valued heat map:

• for Question 8: where the interface is a black, cold map and the user can click to set some X0
i,j to 1.

• for Question 13: given a map of C0 and C1 constants, compute and display the fixed point in a
distributed setting.

You can use Douglas Thain’s simple X11 graphics library.
http://www3.nd.edu/~dthain/courses/cse20211/fall2013/gfx/
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6 Implementation details

Use the C programming language. Using any other language including C++ is likely to halve your mark.
Your programs must compile (with mpicc) and run (with mpirun) on the machines of the ENS (slsu0-01,

slsu0-02 etc.). Provide a name.tar.gz archive in which you have a folder name where name is your name.
Provide a makefile, such that running make at the root of name will compile everything and create all
executable binaries at the root of name. Use double to represent real numbers.

Input Input data is given via standard input. Note that you can use standard input with ./myprogram

and then type things manually, or with ./myprogram < file to use the file file a standard input. The
format is the following:

• width of the grid on first line of standard input

• height on second line

• p on third line

• t the number of iterations on the fourth

• then, the initial grid, described as a sparse matrix on each line with its coordinates:

– 0 i j x is input data for a value x∈ [0, 1] with coordinates (i, j)

– 1 i j k is input data of a constant k∈ [0, 1] with coordinates (i, j)

– 2 i j 0 is a request to give the value at position (i, j) after t iterations.

Output Answer to each of the 2 i j 0 requests by printing the temperature of the corresponding cell.
Note that:

• in the sparse case, requests and input data can be interleaved (and constants will be ignored).

• in the other cases, the first request triggers the computation (subsequent input data will be ignored).
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