
Parallel algorithms 2014-2015 Julien Herrmann, Jean-Marie Madiot

TD 3: P-RAM 2

1 Acceleration factor

Question 1 (Amdahl law). Consider an algorithm with a percentage f of intrinsically sequen-
tial operations. Show that the acceleration factor is bounded by 1/f , no matter how many
processors. What to make of it?

Question 2 (Gustafson factor). Gustafson introduced the acceleration factor Sp = A(1)
A(p) where

A(p) is the average time of an arithmetic operation in a problem of the maximal size that can
fit on p processors. Compute Sp for a n× n matrix operation with:

• nα arithmetic operations,

• w1n
2 elements to be stored in memory,

• w2n
2 i/o (sequential) operations.

Question 3. Give examples of problems with super-linear acceleration factors.

2 Givens rotations on a linear network

To triangulate a matrix while staying numerically stable, we can use Givens rotations. The
base operation is rot(i,k) that combines lines i and i + 1, if they begin with k − 1 zeros, to
replace with 0 the element of coordinates (i+ 1, k), for some magic θ:(

0 . . . 0 a′i,k a′i,k+1 . . . a′i,n
0 . . . 0 0 a′i+1,k+1 . . . a

′
i+1,n

)
←

(
cos θ − sin θ
sin θ cos θ

)(
0 . . . 0 ai,k ai,k+1 . . . ai,n
0 . . . 0 ai+1,k ai+1,k+1 . . . ai+1,n

)
The sequential algorithm can be written:

for k = 1 to n-1:

for i = n-1 downto k:

rot(i,k)

Question 4. Distribute this algorithm on a linear network of n processors. (Do not assume
that rot(i,k) gets faster when k increases.)

Question 5. Same question for only n/2 processors.

3 Connected components on P-RAMs

We want a CREW algorithm that computes the connected components of a graph (V,E). More
precisely if V = J1, nK, we want an array C of size n such that C(i) = C(j) = k if and only i
and j are in the same connected component and k is the smallest node of this component.

Definition 1. At each step of the algorithm, we call pseudo-node labelled with i the set of
nodes C−1(i) = {j | C(j) = i}. We will sometimes identify i and C−1(i).

1



The main invariant of the algorithm is that the smallest node of C−1(i) is i and that the
nodes inside the same pseudo-node are in the same connected component. This assertion holds
if we initialise C with ∀i ∈ V C(i) = i, meaning that each node considers itself the reference
node for its connected component. The goal of the algorithm is to change this selfish attitude.

Definition 2. A k-cyclic pseudo-tree is a directed graph weakly connected (i.e. the induced
undirected graph is connected) such that:

• the outdegree of every node is 1,

• there is exactly one cycle of length k + 1.

A star is a 0-cyclic pseudo-tree where all edges point to the smallest node (the root).

The invariant above is that the directed graph GC = (V, {(i, C(i)) | i ∈ V }) is made of stars.
We identify pseudo-nodes and stars, the centre of the stars being the index of the pseudo-node.
The computation of connected components is done by iterating the following two functions:

gather():

for i∈V in parallel do:

N(i) := min{C(j) | {i,j}∈E, C(i)6=C(j)} or C(i) if the set is empty

for i∈V in parallel do:

T(i) := min{N(j) | C(j)=i, N(j)6=i} or C(i) if the set is empty

jump():

for i∈V in parallel do:

B(i) := T(i)

repeat log(n) times:

for i∈V in parallel do:

T(i) := T(T(i))

for i∈V in parallel do:

C(i) := min{(B(T(i)),T(i)}

Question 6. Apply gather on the following graph, then jump, then gather, etc. Keep track
of the graphs GC and GT = (V, {(i, T (i)) | i ∈ V }).

1 4

5 6 3

7 2

9 8

Question 7. Show that after an application of gather, connected components containing
several pseudo-nodes induce 1-cyclic pseudo-trees in GT . Note that the smallest pseudo-node
of a 1-cyclic pseudo-tree is inside the cycle.

Question 8. Show that jump transforms a 1-cyclic pseudo-tree into a star.

Question 9. Show that after dlog ne combinations of gather and jump the connected compo-
nents of the graph are represented by C.

Question 10. What is the complexity of the algorithm? How many processors are used?

2


