Parallel algorithms and programming

TP 1: “Hello World”’s in MPI

Jean-Marie Madiot, Julien Herrmann
jeanmarie.madiot@ens-lyon.fr,
julien.herrmann@ens-lyon.fr

Suppose you have an MPI program written in C: hello.c. Instead of using
gcc, as for standard C programs, use mpicc to compile MPI-based programs.

$ mpicc hello.c -o hello

Once the program is compiled, run it with mpirun on a number of MPI processes
specified by the option -np:

$ mpirun -np 8 hello

Exercise 1

Write, compile and run an MPI program named hellol.c such that each pro-
cess prints the following line on the standard output (replacing 2 and 5 with
appropriate values):

Hi. I am the process #2 and there are 5 of us.

Look up (on the Internet) the documentation for the following functions: MPI_Init,
MPI Finalize, MPI_Comm rank, MPI_Comm _size, and how you can use them.

Exercise 2

Write, compile and run an MPI program named hello2.c that uses only two
processes. The first one will send the clock time to the second one, and wait for
the reply. The second one will print the value received next to his own name
and reply by sending the clock time. At the end, the first process prints the
value received.

The following functions are relevant: MPI_Send, MPI_Recv, MPI Wtime.



Exercise 3

Extend hello2.c into hello3.c to any number of processes such that the first
one sends the time to all the others, successively. All other processes respond the
same way as in the previous exercise. Then the first process prints successively
all the received values and the identity of the sender.

In a first version, impose the reception order. In a second version, modify the
program using MPI_ANY_SOURCE to receive all messages in any order.

Bonus Try to do all the sendings before all the receptions. Does it still work?
Now, try to replace MPI_Send with MPI_Ssend, does it still work? (Note: don’t
rely on this, for big messages MPI_Send could behave like MPI_Ssend. To do a
truly non-blocking send, use MPI_Isend).

Exercise 4

In hello4.c, the first process will send the value 1 to the next process, then
waits and prints the message from the last process. Every other process will
wait for a value from the previous process and send the double of the value to
the next process. (The last process should send to the first one.)

What will be the result printed by the first process?

Exercise 5

In hello5. c use MPI_Reduce to compute the factorial of the number of processes.

Exercise 6

In hello6. c use smart MPI primitives in order to apply the following function to
each element of the array {0,...,n} (for n well above the number of processes):

x — g% ™ed 1011 164 10111 .

Hint: one of the smart primitives should be MPI_Scatter.



