
Parallel algorithms and programs

TP 2: Parallel sort

Jean-Marie Madiot, Julien Herrmann
jeanmarie.madiot@ens-lyon.fr,

julien.herrmann@ens-lyon.fr

Consider an array A of size n and p = 2k MPI processors to sort it.

Exercise 1

In a first phase, the array A is already distributed (for example, in p files each one of size n/p, but you
can initialise it more simply with a pseudo-random generator, like RANDU1). There is no constraint on the
total memory a processor can use. Each process must then allocate an array v of size n/p and read/copy
the content of the file whose name is the process id in this array. Finally, each process call the function sort

whose interface is:

void sort(double *v, int len, MPI_Comm comm);

with:

• v: the array v,

• len: the size of array v,

• comm: the MPI communicator, that contains all the processes involved in the sort operation.

1. Implement the merge sort algorithm mergesort(double *v, int len) to locally sort one array v.

2. Think of a smart parallel algorithm such that at the end, the virtual array consisting in the amalgama-
tion of all v arrays of each processor by increasing MPI rank becomes sorted. What is the complexity
of your algorithm? (Time? Communication? Memory?)

3. Implement this algorithm in function sort1.

Exercise 2

In a second phase we add two new constraints: processors are not able to use more than twice the memory
necessary to store v, and we suppose we are in a ring topology.

1. Think of a modified parallel algorithm that takes into account this new constraint. What’s the new
complexity?

2. Implement this algorithm in function sort2, trying to optimise the total computation time, taking
into account communication and I/O costs.

1RANDU is a very simple but poor generator, sadly used for many years.

1


