
Symmetries and dualities
in name-passing process calculi

Daniel Hirschkoff1, Jean-Marie Madiot1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France,
2 INRIA/Università di Bologna, Italy

Abstract. We study symmetries and duality between input and output
in the π-calculus. We show that in dualisable versions of π, including πI
and fusions, duality breaks with the addition of ordinary input/output
types. We illustrate two proposals of calculi that overcome these prob-
lems. One approach is based on a modification of fusion calculi in which
the name equivalences produced by fusions are replaced by name pre-
orders, and with a distinction between positive and negative occurrences
of names. The resulting calculus allows us to import subtype systems,
and related results, from the pi-calculus. The second approach consists
in taking the minimal symmetrical conservative extension of π with in-
put/output types.

1 Introduction

Process calculi are algebraic models employed for understanding systems of pro-
cesses: linguistic constructs for concurrency, as well as techniqnes for reasonming
about the behaviour of processes. The π-calculus [15] (sometimes simply called π
below) is one of the most studied process calculi. In particular, it is the paradig-
matical name-passing calculus, that is, a calculus where names (a synonymous
for “channels”) may be passed around. Key aspects for the success of the π-
calculus are the minimality of its syntax — its grammar is made of a handful of
operators — and its expressiveness — it can model a variety of entities, such as
protocols for distributed systems, functions, objects, and so on.

It is common in mathematics to look for symmetries and dualities; dualities
may reveal underlying structure and lead to simpler theories. In turn, dualities
can be used to relate different mathematical entities. This paper is a summary
of work on the π-calculus aimed at studying symmetries and dualities in the
π-calculus, particularly those arising in connection with type systems.

In the π-calculus, computation, or reduction, is interaction. This is achieved
when an input and an output on the same name meet. If the name is a, then the
output, ac.P , emits a name c along a; in the matching input a(x).Q, name x is
bound: it is a placeholder for the object c that is received. The input prefix both
sequentialises a behaviour and binds a name. Correspondingly, in an interaction
two processes are synchronised and, simultaneously, a substitution is performed.
The π-calculus features another binder, the restriction operator. These operators,
together with parallel composition, are the main operators of the calculus.

2

Reasoning about processes usually involves proving behavioural equivalences.
In the case of the π-calculus, there is a well-established theory of equivalences and
proof techniques. In some cases, it is necessary to work in a typed setting. Types
allow one to express constraints about the observations available to the context
when comparing two processes. Indeed, in practice the π-calculus is hardly ever
used untyped: a π programmer has always an intended discipline for the use of
names in mind; making such discipline explicit by means of types may allow one
to validate important behavioural properties which would otherwise fail.

For a simple example, consider a process P that implements two services,
for computing the factorial and the exponentiation (nn) of an integer. The two
services are accessible using channels a and b, that must be communicated to
clients of the services. We assume here only two clients, that receive the channels
via a1 and a2:

P
def
= (νa, b) (a1〈a, b〉. a2〈a, b〉. (A | B)) (1)

We expect that outputs at a or b from the clients are eventually received and
processed by the appropriate service. But this is not necessarily the case: a malign
client can disrupt the expected protocol by simply offering an input at a or b and
then throwing away the values received, or forwarding the values to the wrong
service. These misbehaviours are ruled out by a capability type system imposing
that the clients only obtain the output capability on the names a and b when
receiving them from a1 and a2. The typing rules are straightforward, and mimick
those for the typing of references in imperative languages with subtyping. These
types, called capability types, or i/o-types, are one of the simplest and widely
used type disciplines in π.

In the π-calculus, the natural form of duality comes from the symmetry
between input and output. There are several variants of π where processes can
be ‘symmetrised’ by replacing inputs with outputs and vice versa. The π-calculus
with internal mobility, πI [13], is a subcalculus of π where only bound outputs are
allowed (a bound output, that we shall note a(x).P , is the emission of a private
name x on some channel a). In πI, duality can be expressed at an operational
level, by exchanging (bound) inputs and bound outputs: the dual of a(x).x(y). 0
is a(x).x(y). 0.

Other well-known variants of π with dualities are the calculi in the fusion
family [10, 2, 3]. In fusions, a construct for free input acts as the dual of the
free output construct of π, and the calculus has only one binder, restriction.
Interaction on a given channel has the effect of fusing (that is, identifying)
names.

As for the π-calculus, however, the amazing expressiveness of the fusion cal-
culi makes desirable behavioural properties fail. The examples we introduced for
the π-calculus can be used. For instance, the problems of misbehaving clients of
the services (1) remain. Actually, in fusion calculi additional problems arise; for
example a client receiving the two channels a and b could fuse them. Now a and
b are indistinguishable, and an emission on one of them can reach any of the two
services (moreover, if a definition of a service is recursive, a recursive call could
be redirected towards the other service).

3

The i/o-types, while being important for reasoning, bring in some inherent
asymmetry. Let us give some intuitions about why it is so. In i/o-types, types
are assigned to channels and express capabilities: a name of type oT can be used
only to emit values of type T , and similarly for the input capability (iT). This
is expressed by the following typing rules for i/o-types in π:

Γ ` a : iT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : oT Γ ` b : T Γ ` P
Γ ` ab.P

The rule for input can be read as follows: process a(x).P is well-typed provided
(i) the typing environment, Γ , ensures that the input capability on a can be
derived, and (ii) the continuation of the input can be typed in an environment
where x is used according to T . The typing rule for output checks that (i) the
output capability on a is derivable, (ii) the emitted value, b, has the right type,
and (iii) the continuation P can be typed. As an example, a : i(iT) ` a(x).xt. 0
cannot be derived, because only the input capability is received on a, which
prevents xt. 0 from being typable.

I/o-types come with a notion of subtyping, that makes it possible to relate
type]T (which stands for both input and output capabilities) with input and
output capabilities (in particular, we have]T ≤ iT and]T ≤ oT). We stress
an asymmetry between the constraints attached to the transmitted name in the
two rules above. Indeed, while in a reception we somehow enforce a “contract”
on the usage of the received name, in the rule for output this is not the case: we
can use subtyping in order to derive type, say, iU for b when typechecking the
output, while b’s type can be]U when typechecking the continuation P .

The main technical point that is discussed in this work is the conflict between
the asymmetry inherent to i/o-types and the symmetries we want to obtain via
duality. For example i/o-types can be adapted to πI, but duality cannot be
applied to the resulting typings. In fusion calculi, the conflict with the asymmetry
of i/o-types is even more dramatic. Indeed, subtyping in i/o-types is closely
related to substitution, since replacing a name with another makes sense only if
the latter has a more general type. Fusions are intuitively substitutions operating
in both directions, which leaves no room for subtyping. We explain in Section 3
the problems with symmetries, and why i/o-types cannot be extended easily to
fusions.

We discuss two ways to conciliate symmetries and types. The first approach
is based on a refinement of fusion calculi. Intuitively, the problems of fusion cal-
culi with types arise because at the heart of the operational semantics for fusion
calculi is an equivalence relation on names, generated through name fusions. In
contrast, subtyping and capability systems are based on a preorder relation (sub-
typing, set inclusion among subsets of capabilities). The equivalence on names
forces one to have an equivalence also on types, instead of a preorder.

The crux of the solution we propose is the replacement of the equivalence
on names by a preorder, and a distinction on occurrences of names, between
‘positive’ and ‘negative’. In the resulting single-binder calculus, πP (‘π with

4

Preorder’), reductions generate a preorder. The basic reduction rule is

ca.P | cb.Q −→ P | Q | a/b .

The particle a/b, called an arc, sets a to be above b in the name preorder. Such
a process may redirect a prefix at b (which represents a ‘positive’ occurrence
of b) to become a prefix at a. In the processes written above, all visible occur-
rences of a and c (resp. b) are positive (resp. negative). We show that the i/o
(input/output) capability systems of the π-calculus can be reused in πP, follow-
ing a generalisation of the typing rules of the π-calculus that takes into account
the negative and positive occurrences of names. A better understanding of type
systems with subtyping in name-passing calculi is a by-product of this study. For
instance, the study suggests that it is essential for subtyping that substitutions
produced by communications (in πP, the substitutions pro-duced by arcs) only
affect the positive occurrences of names.

A property of certain fusion calculi (Fusion, Explicit Fusion) is a semantic
duality induced by the symmetry between input and output prefixes. In πP, the
syntax still allows us to swap inputs and outputs, but in general the original and
final processes have incomparable behaviours.

The second approach to conciliating dualities and types possibility is illus-
trated by formalising a calculus named π. This is an extension of π with con-
structs for free input and bound output (note that bound output is not seen as
a derived construct in π). In π, we rely on substitutions as the main mechanism
at work along interactions. To achieve this, we forbid interactions involving a
free input and a free output: the type system rules out processes that use both
kinds of prefixes on the same channel.

Calculus π contains π, and any π process that can be typed using i/o-types
can be typed in exactly the same way in π. Moreover, π contains a ‘dualised’
version of π: one can choose to use some channels in free input and bound output.
For such channels, the typing rules intuitively enforce a ‘contract’ on the usage
of the transmitted name on the side of the emitter (dually to the typing rules
presented above).

Further related work Central to πP is the preorder on names, that breaks the
symmetry of name equivalence in fusion-like calculi. Another important ingredi-
ent for the theory of πP is the distinction between negative and positive occur-
rences of a name. In Update [11] and (asymmetric versions of) Chi [2], reductions
produce ordinary substitutions on names. In practice, however, substitutions are
not much different from fusions: a substitution {a/b} fuses a with b and makes a
the representative of the equivalence class. Still, substitutions are directed, and
in this sense Update and Chi look closer to πP than the other fusion calculi.
For instance Update and Chi, like πP, lack the duality property on computa-
tions. Update was refined to the Fusion calculus [10] because of difficulties in
the extension with polyadicity. Another major difference for Update and Chi
with respect to πP is that in the former calculi substitutions replace all occur-
rences of names, whereas πP takes into account the distinction between positive
and negative occurrences.

5

The question of controlling the fusion of private names has been addressed
in [1], in the U-calculus. This calculus makes no distinction between input and
output, and relies on two forms of binding to achieve a better control of scope
extrusion, thus leading to a sensible behavioural theory that encompasses fusions
and π. It is unclear how capability types could be defined in this calculs, as it
does not have primitive constructs for input and output.

Structure of the paper . Section 2 gives some background on calculi for mobile
processes. Section 3 shows that, in typed languages with fusions, it is impossi-
ble to have a non-trivial subtyping, assuming a few simple and standard typing
properties of name-passing calculi. Section 4 refines the fusion calculi by replac-
ing the equivalence relation on names generated through communication by a
preorder, yielding the calculus πP. Finally, Section 5 presents π, the extension
of the π-calculus with capability types that enjoys duality properties.

2 Background on name-passing calculi

In this section we group terminology and notation that are common to all the
calculi discussed in the paper. For simplicity of presentation, all calculi in the
paper are finite. The addition of operators like replication for writing infinite
behaviours goes as expected. The results in the paper would not be affected.

We informally call name-passing the calculi in the π-calculus tradition, which
have the usual constructs of parallel composition and restriction, and in which
computation is interaction between input and output constructs. Names identify
the pairs of matching inputs/outputs, and the values transmitted may themselves
be names. Restriction is a binder for the names; in some cases the input may
be a binder too. Examples of these calculi are the π-calculus, the asynchronous
π-calculus, the Join calculus, the Distributed π-calculus, the Fusion calculus,
and so on. Binders support the usual alpha-conversion mechanism, and give rise
to the usual definitions of free and bound names.

To simplify the presentation, throughout the paper, in all statements (includ-
ing rules), we assume that the bound names of the entities in the statements are
different from each other and different from the free names (Barendregt conven-
tion on names). Similarly, we say that a name is fresh or fresh for a process, if
the name does not appear in the entities of the statements or in the process.

We use a, b, . . . to range over names. In a free input ab.P , bound input
a(b).P , free output ab.P , and bout output a(b), we call a the subject of the
prefix, and b the object. We sometimes abbreviate prefixes as a.P and a.P when
the object carried is not important. We omit trailing 0, for instance writing ab
in place of ab. 0. We write P{a/b} for the result of applying the substitution of
b with a in P .

The semantics of the calculi studied in the paper are given in the reduction
style, by defining structural congruence and reduction relations. Structural con-
gruence, ≡, is defined as the usual congruence produced by the monoidal rules
for parallel composition and the rules for commuting and extruding restriction

6

3 Typing and subtyping with fusions

Calculi having fusions. When restriction is the only binder (hence the prefixes
are not binding), we say that the calculus has a single binder. If in addition
interaction involves fusion between names, so that we have (=⇒ stands for an
arbitrary number of reduction steps, and in the right-hand side P , Q can be
omitted if they are 0)

(νc) (ab.P | ac.Q | R) =⇒ (P | Q | R){b/c} , (2)

we say that the calculus has name-fusions, or, more briefly, has fusions. (We
are not requiring that (2) is among the rules of the operational semantics of the
calculus, just that (2) holds. The shape of (2) has been chosen so to capture the
existing calculi; the presence ofR allows us to capture also the Solos calculus.) All
single-binder calculi in the literature (Update [11], Chi [2], Fusion [10], Explicit
Fusion calculus [3], Solos [8]) have fusions. In Section 4 we will introduce a
single-binder calculus without fusions.

In all calculi in the paper, (reduction-closed) barbed congruence will be our
reference behavioural equivalence. Its definition only requires a reduction rela-
tion, −→, and a notion of barb on names, ↓a. Intuitively, a barb at a holds for
a process if that process can accept an offer of interaction at a from its environ-
ment. We write 'L for (strong) reduction-closed barbed congruence in a calculus
L. Informally, 'L is the largest relation that is context-closed, barb-preserving,
and reduction-closed. Its weak version, written uL, replaces the relation −→L
with its reflexive and transitive closure =⇒L, and the barbs ↓La with the weak
barbs ⇓La , where ⇓La is the composition of the relations =⇒L and ↓La (i.e., the
barb is visible after some internal actions).

We consider typed versions of languages with fusions. We show that in such
languages it is impossible to have a non-trivial subtyping, assuming a few simple
and standard typing properties of name-passing calculi.

We use T,U to range over types, and Γ to range over type environments, i.e.,
partial functions from names to types. We write dom(Γ) for the set of names on
which Γ is defined. In name-passing calculi, a type system assigns a type to each
name. Typing judgements are of the form Γ ` P (process P respects the type
assignments in Γ), and Γ ` a : T (name a can be assigned type T in Γ).3 The
following are the standard typing rules for parallel composition and restriction:

Γ ` P1 Γ ` P2

Γ ` P1 | P2

Γ, x : T ` P
Γ ` (νx : T) P

(3)

The first rule says that any two processes typed in the same type environment
can be composed in parallel. The second rule handles name restriction.

3 We consider in this paper basic type systems and basic properties for them; more
sophisticated type systems exist where processes have a type too, e.g., behavioural
type systems.

7

In name-passing calculi, the basic type construct is the channel (or connec-
tion) type] T . This is the type of a name that may carry, in an input or an
output, values of type T . Consequently, we also assume that the following rule
for prefixes ab.P and ab.P is admissible.

Γ (a) =] T Γ (b) = T Γ ` P
Γ ` α.P

α ∈ {ab, ab} (4)

(Prefixes may not have a continuation, in which case P would be missing from
the rule.) In the rule, the type of the subject and of the object of the prefix are
compatible. Again, these need not be the typing rules for prefixes; we are just
assuming that the rules are valid in the type system. The standard rule for prefix
would have, as hypotheses, Γ ` a :] T and Γ ` b : T . These imply, but are not
equivalent to, the hypotheses in (4), for instance in presence of subtyping.

Fundamental properties of type systems are:

– Subject Reduction (or Type Soundness): if Γ ` P and P → P ′, then Γ ` P ′;

– Weakening: if Γ ` P and a is fresh, then Γ, a : T ` P ;

– Strengthening: whenever Γ, a : T ` P and a is fresh for P , then Γ ` P ;

– Closure under injective substitutions: if Γ, a : T ` P and b is fresh, then
Γ, b : T ` P{b/a}.

Definition 1. A typed calculus with single binder is plain if it satisfies Subject
Reduction, Weakening, Strengthening, Closure under injective substitutions, and
the typing rules (3) and (4) are admissible.

If the type system admits subtyping, then another fundamental property is
narrowing, which authorises, in a typing environment, the specialisation of types:

– (Narrowing): if Γ, a : T ` P and U ≤ T then also Γ, a : U ` P .

When narrowing holds, we say that the calculus supports narrowing.

A typed calculus has trivial subtyping if, whenever T ≤ U , we have Γ, a : T `
P iff Γ, a : U ` P . When this is not the case (i.e., there are T,U with T ≤ U , and
T,U are not interchangeable in all typing judgements) we say that the calculus
has meaningful subtyping.

Under the assumptions of Definition 1, a calculus with fusions may only have
trivial subtyping.

Theorem 1. A typed calculus with fusions that is plain and supports narrowing
has trivial subtyping.

In the proof, given in [5], we assume a meaningful subtyping and use it
to derive a contradiction from type soundness and the other hypotheses. An
additional theorem is presented in [5], showing that any form of narrowing, on
one prefix object, would force subtyping to be trivial.

8

4 A calculus with name preorders

4.1 Preorders, positive and negative occurrences

We now refine the fusion calculi by replacing the equivalence relation on names
generated through communication by a preorder, yielding πP. As the preorder
on types given by subtyping allows promotions between related types, so the
preorder on names of πP allows promotions between related names. Precisely, if
a is below a name b in the preorder, then a prefix at a may be promoted to a
prefix at b and then interact with another prefix at b. Thus an input av.P may
interact with an output bw.Q; and, if also c is below b, then av.P may as well
interact with an output cz.R.

The ordering on names is introduced by means of the arc construct, a/b, that
declares the source b to be below the target a. The remaining operators are as
for fusion calculi.

P ::= 0 | P | P | ab.P | ab.P | νaP | a/b .

We explain the effect of reduction by means of contexts, rather than separate
rules for each operator. Contexts yield a more succinct presentation. An active
context is one in which the hole may reduce. Thus the only difference with respect
to ordinary contexts is that the hole may not occur underneath a prefix. We use
C to range over (ordinary) contexts, and E for active contexts.

The rules for reduction are as follows:

R-SCon :
P ≡ E[Q] Q −→ Q′ E[Q′] ≡ P ′

P −→ P ′

R-Inter : ab.P | ac.Q −→ P | Q | b/c

R-SubOut : a/b | bc.Q −→ a/b | ac.Q

R-SubInp : a/b | bc.Q −→ a/b | ac.Q

Rule R-Inter shows that communication generates an arc. Rules R-SubOut
and R-SubInp show that arcs only act on the subject of prefixes; moreover, they
only act on unguarded prefixes (i.e., prefixes that are not underneath another
prefix). The rules also show that arcs are persistent processes. Acting only on
prefix subjects, arcs can be thought of as particles that “redirect prefixes”: an arc
a/b redirects a prefix at b towards a higher name a. (Arcs remind us of special π-
calculus processes, called forwarders or wires [7], which under certain hypotheses
allow one to model substitutions; as for arcs, so the effect of forwarders is to
replace the subject of prefixes.)

9

We write =⇒ for the reflexive and transitive closure of −→. Here are some
examples of reduction.

ac.ca.e.P | ad.de.a.Q
R-Inter −→ ca.e.P | de.a.Q | c/d

R-SubInp −→ ca.e.P | ce.a.Q | c/d
R-Inter −→ e.P | a.Q | c/d | a/e

R-SubInp −→ a.P | a.Q | c/d | a/e
R-Inter −→ P | Q | c/d | a/e

Reductions can produce multiple arcs that act on the same name. This may be
used to represent certain forms of choice, as in the following processes:

(νh, k) (bu. cu.u | bh.h.P | ck. k.Q)
=⇒ (νh, k) (u | h/u | k/u | h.P | k.Q) .

Both arcs may act on u, and are therefore in competition with each other.
The outcome of the competition determines which process between P and Q is
activated. For instance, reduction may continue as follows:

R-SubOut −→ (νh, k) (k | h/u | k/u | h.P | k.Q)
R-Inter −→ (νh, k) (h/u | k/u | h.P | Q) .

Definition 2 (Positive and negative occurrences). In an input ab.P and
an arc a/b, the name b has a negative occurrence. All other occurrences of names
in input, output and arcs are positive occurrences.

An occurrence in a restriction (νa) is neither negative nor positive, intuitively
because restriction acts only as a binder, and does not stand for an usage of the
name (in particular, it does not take part in a substitution).

Negative occurrences are particularly important, as by properly tuning them,
different usages of names may be obtained. For instance, a name with zero neg-
ative occurrence is a constant (i.e., it is a channel, and may not be substituted);
and a name that has a single negative occurrence is like a π-calculus name bound
by an input (see [5]).

4.2 Types

We now show that the i/o capability type system and its subtyping can be
transplanted from π to πP.

In the typing rules for i/o-types in the (monadic) π-calculus [12], two addi-
tional types are introduced: o T , the type of a name that can be used only in
output and that carries values of type T ; and i T , the type of a name that can
be used only in input and that carries values of type T . The subtyping rules stip-
ulate that i is covariant, o is contravariant, and] is invariant. The subsumption
rule injects subtyping in the typing rules. The most important typing rules are
those for input and output prefixes; for input we have:

T-InpBound :
Γ ` a : i T Γ, b : T ` P

Γ ` a(b).P

10

Types (1 is the unit type): T ::= i T | o T |] T | 1

Subtyping rules:

] T ≤ i T] T ≤ o T

S ≤ T
i S ≤ i T

S ≤ T
o T ≤ o S T ≤ T

S ≤ T T ≤ U
S ≤ U

Typing rules:

Tv-Name

Γ, a : T ` a : T

Subsumption
Γ ` a : S S ≤ T

Γ ` a : T

T-Res
Γ, a : T ` P
Γ ` νaP

T-Par
Γ ` P Γ ` Q

Γ ` P | Q

T-Nil

Γ ` 0

T-Out
Γ ` a : o T Γ ` b : T Γ ` P

Γ ` ab.P

T-InpFree
Γ ` a : i Γ (b) Γ ` P

Γ ` ab.P

T-Arc
Γ ` a : Γ (b)

Γ ` a/b

Table 1. The type system of πP

The type system for πP is presented in Table 1. With respect to the π-
calculus, only the rule for input needs an adjustment, as πP uses free, rather
than bound, input. The idea in rule T-InpFree of πP is however the same as
in rule T-InpBound of π: we look up the type of the object of the prefix, say
T , and we require i T as the type for the subject of the prefix. To understand
the typing of an arc a/b, recall that such an arc allows one to replace b with a.
Rule T-Arc essentially checks that a has at least as many capabilities as b, in
line with the intuition for subtyping in capability type systems.

Common to the premises of T-InpFree and T-Arc is the look-up of the
type of names that occur negatively (the source of an arc and the object of an
input prefix): the type that appears for b in the hypothesis is precisely the type
found in the conclusion (within the process or in Γ). In contrast, the types for
positive occurrences may be different (e.g., because of subsumption Γ ` a : i T
may hold even if Γ (a) 6= i T).

We cannot type inputs like outputs: consider

T-InpFree2-Wrong :
Γ ` a : i T Γ ` b : T

Γ ` ab
Rule T-InpFree2-Wrong would accept, for instance, an input ab in an envi-
ronment Γ where a : i i 1 and b :] 1. By subtyping and subsumption, we could

11

then derive Γ ` b : i 1 . In contrast, rule T-InpFree, following the input rule of
the π-calculus, makes sure that the object of the input does not have too many
capabilities with respect to what is expected in the type of the subject of the
input. This constraint is necessary for subject reduction. As a counterexample,
assuming rule T-InpFree2-Wrong, we would have a :] i 1, b :] 1, c : i 1 ` P ,

for P
def
= ab | ac | b. However, P −→ c/b | b −→ c/b | c, and the final derivative is

not typable under Γ (as Γ only authorises inputs at c).

In πP, the direction of the narrowing is determined by the negative or positive
occurrences of a name.

Theorem 2 (Polarised narrowing). Let T1, T2 be types such that T1 ≤ T2.

1. If a occurs only positively in P , then Γ, a : T2 ` P implies Γ, a : T1 ` P .

2. If a occurs only negatively in P , then Γ, a : T1 ` P implies Γ, a : T2 ` P .

3. If a occurs both positively and negatively in P , then it is in general unsound
to replace, in a typing Γ ` P , the type of a in Γ with a subtype or supertype.

Theorem 2 (specialised to prefixes) does not contradict Theorem 1, because
in πP, reduction does not satisfy (2) (from Section 2). We have subject reduction:

Theorem 3. If Γ ` P and P −→ P ′ then also Γ ` P ′.

4.3 Other results

Behavioural equivalences for πP and the fusion calculi, in the form of barbed
congruence, are considered in [5]. It is shown that the modification from fusion
calculi to πP also brings in behavioural differences. For instance, both in the π-
calculus and in πP, a process that creates a new name a has the guarantee that
a will remain different from all other known names, even if a is communicated
to other processes (only the creator of a can break this, by using a in negative
position). This is not true in fusion calculi, where the emission of a may produce
fusions between a and other names. To demonstrate the proximity with the π-
calculus we show that the embedding of the asynchronous π-calculus into πP
is fully abstract (full abstraction of the encoding of the π-calculus into fusion
calculi fails). We also exhibit an encoding of Explicit Fusions into πP, where
fusions become bi-directional arcs. Indeed πP is closer to the π-calculus than to
fusion calculi, not only in typing, but also behaviourally.

The reduction semantics for πP that we have presented ma considered eager,
in that arcs may freely act on prefixes. An alternative, by-need, semantics, is
possible, where arcs act on prefixes only when interactions occur. See [5] for a
comparison between the two semantics, as well as for further comparison with
semantics based on name fusion. The behavioural theory of πP, under by-need
semantics, is further studied in [6]. Two characterisations of barbed congruence,
using a labelled transition system and using equations, are presented. Also, see
[5] for examples concerning behavioural laws and expressiveness results for πP.

12

5 π, a symmetric π-calculus

In this section, we present π, a π-calculus with i/o-types that enjoys duality
properties. We define the syntax and operational semantics for π processes in
Section 5.1, introduce types and barbed congruence in Section 5.2, establish
duality in Section 5.3. We finally discuss other results, and an application to the
encoding of functions, in Section 5.4.

5.1 Syntax and Operational Semantics

The syntax of π is as follows:

P ::= 0 | P | P | α.P | (νa)P α ::= ρb | ρ(x) ρ ::= a | a

π differs from the usual π-calculus by the presence of the free input ab and bound
output a(x) prefixes. Note that in π, the latter is not a notation for (νx)ax.P ,
but a primitive construct. These prefixes are the symmetric counterpart of ab
and a(x) respectively. Given ρ of the form a or a, n(ρ) is defined by

Reduction is defined by law R-SCon from Section 4.1, as well as the following
axioms, to allow communication involving two prefixes only if at least one of them
is bound :

ab.P | a(x).Q → P | Q[b/x] ab.P | a(x).Q → P | Q[b/x]

a(x).P | a(x).Q → (νx)(P | Q)

⇒ denotes the reflexive transitive closure of →. Note that the π process ab | ab
has no reduction; this process is ruled out by the type system presented below.

5.2 Types and Behavioural Equivalence

Types in π are a refinement of standard i/o-types: in addition to capabilities
(ranged over using c), we annotate types with sorts (s), that specify whether a
name can be used in free input (sort e) or in free output (r) — note that a name
cannot be used to build both kinds of free prefixes.

T ::= csT | 1 c ::= i | o |] s ::= e | r

If name a has type crT , we shall refer to a as a r-name, and similarly for e.
The subtyping relation is the smallest reflexive and transitive relation ≤

satisfying the rules of Figure 1. As in the π-calculus ir is covariant and or is
contravariant. Dually, ie is contravariant and oe is covariant. Note that sorts (e,
r) are not affected by subtyping.

The type system is given by the rules of Figure 2. We write Γ (a) for the
type associated to a in Γ . There is a dedicated typing rule for every kind of
prefix (free, ρb, or bound, ρ(x)), according to the sort of the involved name.
T↔ stands for T where we switch the toplevel capability: (csT)↔ = csT where

13

]sT ≤ isT]sT ≤ osT

T1 ≤ T2

irT1 ≤ irT2

T1 ≤ T2

orT2 ≤ orT1

T1 ≤ T2

ieT2 ≤ ieT1

T1 ≤ T2

oeT1 ≤ oeT2

Fig. 1. Subtyping in π

Γ ` a : irT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : ieT Γ, x : T↔ ` P
Γ ` a(x).P

Γ ` a : oeT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : orT Γ, x : T↔ ` P
Γ ` a(x).P

Γ ` a : ieT Γ ` b : T Γ ` P
Γ ` ab.P

Γ ` a : orT Γ ` b : T Γ ` P
Γ ` ab.P

Γ, a : T ` P
Γ ` (νa)P

Γ ` P Γ ` Q
Γ ` P | Q Γ ` 0

Γ (a) ≤ T
Γ ` a : T

Fig. 2. π: Typing rules

o = i, i = o,] =]. The typing rules for r-names impose a constraint on the
receiving side: all inputs on a r-channel should be bound. Note that a(x).P
and (νx)ax.P are not equivalent from the point of view of typing: typing a
bound output on a r-channel (a) imposes that the transmitted name (x) is used
according to the “dual constraint” w.r.t. what a’s type specifies: this is enforced
using T↔ (while names received on a are used according to T). Symmetrical
considerations hold for e-names, that impose constraints on the emitting side.

Remark 1 (“Double contract”). We could adopt a more liberal typing for bound
outputs on r names, and use the rule

Γ ` a : orT Γ, x : T ′ ` P T ′ ≤ T
Γ ` a(x).P

(and its counterpart for inputs on e-names). This would have the effect of typ-
ing a(x).P like (νx)ax.P . We instead chose to enforce what we call a “double
contract”: the same way a receiving process uses the bound name according to
the type specified in the channel that is used for reception, the continuation of a
bound output uses the emitted name according to T↔, the symmetrised version
of T . This corresponds to a useful programming idiom in π, where it is common
to create a name, transmit one capability on this name and use locally the other,
dual capability. This choice moreover simplifies reasoning about π.

14

Observe that when a typable process reduces according to

a(x).P | a(x).Q→ (νx)(P | Q) ,

if a has type, say,]r(osT), then in the right hand side process, name x is given
type]sT , and the] capability is “split” into isT (used by P) and osT (used by
Q). It would be the other way around if a’s sort were e.

Proposition 1 (Subject reduction). If Γ ` P and P → Q then Γ ` Q.

We now move to the definition of behavioural equivalence.

Definition 3 (Contexts). Contexts are processes with one occurrence of the
hole, written [−]. They are defined by the following grammar:

C ::= [−] | C | P | C | P | α.C | (νa)C .

Definition 4. Let Γ,∆ be typing environments. We say that Γ extends ∆ if the
support of ∆ is included in the support of Γ , and if ∆ ` x : T entails Γ ` x : T
for all x. A context C is a (Γ/∆)-context, written Γ/∆ ` C, if C can be typed
in the environment Γ , the hole being well-typed in any context that extends ∆.

Definition 5 (Barbs). Given ρ ∈ {a, a}, where a is a name, we say that P
exhibits barb ρ, written P↓ρ, if P ≡ (νc1 . . . cn)(α.Q | R) where α ∈ {ρ(x), ρb}
with a 6∈ {c1, . . . , cn}. We extend the definition to weak barbs: P ⇓ρ stands for
P ⇒↓ρ.

Definition 6 (Typed barbed congruence). Barbed bisimilarity is the largest
symmetric relation ≈̇ such that whenever P ≈̇Q,

1. if P ↓ρ then Q ⇓ρ, and
2. if P → P ′ then Q⇒ ≈̇P ′.

When ∆ ` P and ∆ ` Q, we say that P and Q are barbed congruent at ∆,
written ∆B P ∼=c Q, if for all (Γ/∆)-context C, C[P] ≈̇ C[Q].

5.3 Duality

Definition 7 (Dual of a process). The dual of a process P , written P , is
the process obtained by transforming prefixes as follows: ab = ab, ab = ab,
a(x) = a(x), a(x) = a(x), and applying dualisation homeomorphically to the
other constructs.

Lemma 1 (Duality for reduction). If P → Q then P → Q.

Dualising a type means swapping i/o capabilities and e/r sorts.

Definition 8 (Dual of a type). The dual of T , written T , is defined as follows:

csT = cs T with r = e, e = r, i = o, o = i .

We extend the definition to typing environments, and write Γ for the dual of Γ .

15

Lemma 2 (Duality for typing). The type system enjoys the following duality
properties: If T1 ≤ T2 then T1 ≤ T2. Moreover, if Γ ` P then Γ ` P . Finally, if
Γ/∆ ` C then Γ/∆ ` C.

Most importantly, duality holds for typed barbed congruence. The result is
easy in the untyped case, since duality preserves reduction and dualises barbs.
On the other hand, we are not aware of the existence of another system having
this property in presence of i/o-types.

Theorem 4 (Duality for ∼=c). If ∆B P ∼=c Q then ∆B P ∼=c Q.

5.4 Further results and applications

It is shown in [4] that π can be related to π, by translating π into a variant of
the π-calculus with i/o-types in a a fully abstract way. This result shows that π
and π are rather close in terms of expressiveness.

As an application of π, its dualities, and its behavioural theory, the calculus
is used in [4] to relate two encodings of call-by-name λ-calculus. The first one is
the ordinary encoding by Milner [9], the second one, more recent, is by van Bakel
and Vigliotti [16]. The two encodings are syntactically quite different. Milner’s is
input-based, in that an abstraction interacts with its environment via an input.
In contrast, van Bakel and Vigliotti’s is output-based.

We exploit π (in fact the extension of π with delayed input) to prove that
the two encodings are the dual of one another. This is achieved by first em-
bedding the π-terms of the λ-encodings into π, and then applying behavioural
laws of π. The correctness of these transformations is justified using i/o-types
(essentially to express the conditions under which a link can be erased in favour
of a substitution). As a consequence, correctness results for one encoding can
be transferred onto the other one. For instance, we derive that the equivalence
induced on λ-terms by Milner’s encoding (whereby two λ-terms are equal if their
π-calculus images are behaviourally equivalent) is the same as that induced by
van Bakel and Vigliotti’s encoding. And since for Milner’s encoding this equiv-
alence coincides with the Levy-Longo tree equality [14], the same holds for van
Bakel and Vigliotti’s encoding, a question that is not addressed in [16].

Acknowledgments The authors acknowledge support from the ANR projects
2010-BLAN-0305 PiCoq and 12IS02001 PACE.

The third author, Davide Sangiorgi, would like to add special thanks to
Jozef Gruska: my current research is quite remote from the systolic automata
and systems on which I collaborated with Jozef when I was a student; I have
learned a lot from Jozef’s papers and from our collaboration, and it is a pleasure
to contribute a paper in this volume.

References

1. M. Boreale, M. G. Buscemi, and U. Montanari. A General Name Binding Mecha-
nism. In TGC, volume 3705 of LNCS, pages 61–74. Springer, 2005.

16

2. Y. Fu. The χ-calculus. In Proc. APDC, pages 74–81. IEEE Computer Society
Press, 1997.

3. P. Gardner and L. Wischik. Explicit fusions. In Proc. of MFCS, volume 1893 of
LNCS, pages 373–382. Springer-Verlag, 2000.

4. D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi. Duality and i/o-types in the π-
calculus. In Proc. of CONCUR, volume 7454 of LNCS, pages 302–316. Springer,
2012.

5. D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi. Name-Passing Calculi: From Fu-
sions to Preorders and Types. long version of the paper presented at LICS’13, in
preparation, 2014.

6. D. Hirschkoff, J.-M. Madiot, and X. Xu. A behavioural theory for a π-calculus
with preorders. submitted, 2014.

7. K. Honda and N. Yoshida. On reduction-based process semantics. Theor. Comp.
Sci., 152(2):437–486, 1995.

8. C. Laneve and B. Victor. Solos in Concert. Mathematical Structures in Computer
Science, 13(5):657–683, 2003.

9. R. Milner. Functions as processes. Mathematical Structures in Computer Science,
2(2):119–141, 1992.

10. J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry in
mobile processes. In Proc. of LICS, pages 176 –185. IEEE, 1998.

11. Joachim Parrow and Björn Victor. The update calculus (extended abstract). In
AMAST, volume 1349 of LNCS, pages 409–423. Springer, 1997.

12. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, 6(5):409–453, 1996.

13. D. Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. In Selected
papers from TAPSOFT ’95, pages 235–274. Elsevier, 1996.

14. D. Sangiorgi. Lazy functions and mobile processes. In Proof, Language, and In-
teraction, pages 691–720. The MIT Press, 2000.

15. D. Sangiorgi and D. Walker. The Pi-Calculus: a theory of mobile processes. Cam-
bridge University Press, 2001.

16. S. van Bakel and M. G. Vigliotti. An Implicative Logic based encoding of the
λ-calculus into the π-calculus, 2014. From http://www.doc.ic.ac.uk/~svb/.

