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Abstract. We study the behavioural theory of πP, a π-calculus in the
tradition of Fusions and Chi calculi. In contrast with such calculi, re-
duction in πP generates a preorder on names rather than an equivalence
relation. We present two characterisations of barbed congruence in πP:
the first is based on a compositional LTS, and the second is an axiomati-
sation. The results in this paper bring out basic properties of πP, mostly
related to the interplay between the restriction operator and the preorder
on names.
Consequently, πP is a calculus in the tradition of Fusion calculi, in which
both types and behavioural equivalences can be exploited in order to
reason rigorously about concurrent and mobile systems.

1 Introduction

The π-calculus expresses mobility via name passing, and has two binders: the
input prefix binds the value to be received, and restriction is used to delimit the
scope of a private name. The study of Fusions [16], Chi [8], Explicit Fusions [20]
and Solos [13] has shown that using restriction as the only binder is enough to
express name passing. In such calculi (which, reusing a terminology from [10],
we shall refer to as fusion calculi), the bound input prefix, c(x).P , is dropped
in favour of free input, cb.P , and communication involving two prefixes cb and
ca generates the fusion of names a and b. This yields a pleasing symmetry
between input and output prefixes; moreover, one can encode bound input in
terms of free input as (νx)cx.P . Fusion calculi therefore promote minimality
(keep only restriction as a binder) and symmetry (input and output prefixes
play similar roles). Moreover, and most importantly, fusions act on restricted
names, in contrast with the π-calculus, where restricted names can only replace
names bound by input (and are thus treated like constants).

The behavioural theory of existing fusion calculi is generally simpler than in
the π-calculus (in particular, bisimilarity is a congruence). Fusion calculi have
notably been used to analyse concurrent constraints [19], to study distributed
implementations of programming languages [9,5] and to establish connections
with proof theory [7].

Symmetry comes however at a price. It has indeed been shown in [10] that
i/o-types (input/output types, [17]) cannot be adapted to a fusion calculus. Such



types go beyond the simple discipline of sorting, and can be useful, in particular,
to reason using typed behavioural equivalences [17,18].

The intuitive reason of the incompatibility of i/o-types with fusions can be
explained by considering the following structural congruence law in Explicit
Fusions (but the point is essentially the same for other fusion calculi):

a(x).P | a=b ≡ b(x).P | a=b .
Process a=b is an explicit fusion. The law says that in presence of a=b, an input
on a can be viewed as the same input on b, and vice-versa (fusion processes
are somehow akin to equators, in an asynchronous setting [12]). This shows
that fusions define a symmetric relation on names; this is incompatible with a
nontrivial (i.e., asymmetric) subtyping relation, which is necessary for i/o-types
to make sense.

This observation has led in [10] to the introduction of πP, a π-calculus with
name preorders. The most important difference between πP and existing name-
passing calculi is that interaction does not have the effect of equating (or fusing)
two names, but instead generates an arc process, as follows:

ca.P | cb.Q −→ a/b | P | Q .

The arc a/b expresses the fact that anything that can be done using name b can
be done using a as well (but not the opposite): we say that a is above b. Arcs
induce a preorder relation on names, which can evolve along reductions.

Arcs can modify interaction possibilities: in presence of a/b, a is above b, hence
a process emitting on b can also make an output transition along channel a. In
general, an output on channel c can interact with an input on d provided c and
d are joinable, written cg d, which means that there is some name that is above
both c and d according to the preorder relation. To formalise these observations,
the operational semantics exploits conditions involving names, which are either
of the form b ≺ a (a is above b), or a g b (a and b are joinable).

πP can be described as a variant of Explicit Fusions, in which arcs replace
fusion processes. Beyond the possibility to define i/o-types and subtyping for
πP [10], we would like to analyse the consequences of the novel aspects of πP,
whose behaviour does not seem to be reducible to existing calculi.

In particular, name preorders have an impact on how processes express be-
haviours. Barbed congruence for πP, written ', is defined in [10]. Some laws for
' suggest that the behavioural theory of πP differs w.r.t. existing fusion calculi.
As an illustration, consider the following interleaving law, which is valid in πP
(and in π):

a(x).b(y).(x | y) ' a(x).b(y).(x.y + y.x) .

a(x) is the emission of a fresh name x on a, and x (resp. y) stands for an output
(resp. input) where the value being transmitted is irrelevant. In Fusions, unlike
in the π-calculus, the process that creates successively two fresh names x and y
cannot prevent the context from equating (“fusing”) x and y. Hence, in order
for the equivalence to hold, it is necessary to add a third summand on the right,
[x = y]τ . This example suggests that πP gives a better control on restricted
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names than existing fusion calculi. This issue also motivated the study of two
variants of fusion calculi that have a refined notion of restriction [3,4].

The main purpose of the present work is to deepen the study of the be-
havioural theory of πP, in an untyped setting. We define a Labelled Transition
System (LTS) for πP, and show that the induced notion of bisimilarity, written
∼, characterises ' (Section 3). It can be noted that [10] presents a characteri-
sation of barbed congruence, using an LTS that is rather ad hoc, because it is
based on the definition of the reduction relation. Unlike the latter, the LTS we
present here is structural.

The LTS reveals interesting aspects of interaction in πP. An important ob-
servation is related to the interplay between arcs and the restriction operator.
It is for instance possible for a process to react to an input offer on some chan-
nel, say c, without being actually able to perform an output on c. This is the
case for process P0 , (νa)(a(x).0 | a/c). Because a is above c in the preorder, P0

cannot do an output on c, although c is occurs free in P0 (it could if the arc a/c
was replaced with c/a). However, P0 | c(y).0 can perform a reduction: intuitively,
by extending the scope of (νa), the input at c can be moved to a, so that the
communication takes place.

This phenomenon leads to the addition of a new type of labels in the LTS,
corresponding to what we call protected actions: in the example P0 can do a pro-
tected output at c, meaning that it can react to an input offer at c. Accordingly,
we introduce protected names, which correspond to (usages of) names where a
protected action occurs: intuitively, in P0, name c is protected. As expected,
protected actions correspond to observables in the reduction-based semantics
supporting the definition of '.

Arc processes do not have transitions, but they induce relations between
names, which in turn influence the behaviour of processes. Accordingly, strong
bisimilarity, ∼, not only tests transitions, but also has a clause to guarantee that
related processes entail the same conditions.

Finally, the LTS also includes a label [ϕ]τ , expressing “conditional synchro-
nisation”. Intuitively, process a | b is not able to perform a τ transition by itself,
but it should be when the environment entails ag b. Hence, in order for our LTS
to be compositional, we include labels of the form [ϕ]τ , interpreted as “τ under
the condition ϕ”.

In Section 4, we provide a second characterisation of barbed congruence, by
presenting a set of laws that define an axiomatisation of '. Algebraic laws help
analysing the behaviour of the constructs of the calculus and their interplay. We
present a sample of behavioural equalities, and explain how they can be derived
equationally, in Section 4.1.

The axiomatisation we give is less simple than, say, the one for Fusions in [16],
for two reasons: first, we manipulate preorders between names rather than equiv-
alences. Second, the preorder is explicitly represented in processes, so that some
equational laws must describe the interplay between processes and the preorder
relation. On the contrary, such aspects are dealt with implicitly in Fusions—we
sketch how our ideas can be adapted to Explicit Fusions in Section 4.3.
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The axiomatisation exploits the idea that πP processes have a state com-
ponent, corresponding to the preorder induced by arcs. Several laws in the ax-
iomatisation express persistence of the state component (the state can only be
extended along computation). Moreover, the restriction operator prevents the
state from being globally shared in general: for instance, in process P0 above,
name a can be used instead of c, but is only known inside the scope of (νa). All
in all, the handling of restriction in our axiomatisation requires more care than
is usually the case, due to the necessity to express the “view” that subprocesses
have on the preorder of names.

To present the axiomatisation, we renounce minimality. The syntax of the
calculus in this paper differs from the one in [10]: we include bound prefixes
and sums with conditions, as it is customary for axiomatisations for the π-
calculus [15,18]. We compare the calculus from [10] with ours in Remark 3
and Proposition 11. We show that the differences are unimportant: the calculus
from [10] can be encoded into ours and the behavioural equivalence is unaffected.

We focus in this paper on a finite calculus. This is sufficient to enlighten the
main aspects of the behavioural theory of processes. We do not expect any unpre-
dicted difficulty to arise, in the definition of labelled transitions and bisimilarity,
from the extension of πP with a replication operator.

The paper describes our results and sketches the most important proofs. We
refer to [11] for a more detailed presentation of the technical details. Related
work is discussed along the paper, where it is relevant.

2 πP: Reduction-Based Semantics

The Calculus: Preorders and Processes. We consider a countable set of names
a, b, c, . . . , x, y, . . . , and define conditions (ϕ), extended names (α, β), prefixes
(π) and processes (P,Q) as follows:

ϕ ::= a ≺ b
∣∣ a g b α, β ::= a

∣∣ {a} π ::= α(x)
∣∣ α(x)

∣∣ [ϕ]τ

P,Q ::= P | Q
∣∣ (νa)P

∣∣ a/b ∣∣ Σi∈Iπi.Pi

There are two forms of conditions, ranged over with ϕ: ϕ = a ≺ b is read “b is
above a” and ϕ = a g b is read “a and b are joinable”. In both cases, we have
n(ϕ) = {a, b}. We explain below how we extend relations ≺ and g to extended
names. When n(ϕ) = {a}, we say that ϕ is reflexive, and abbreviate in this case
prefix [ϕ]τ as τ . Condition b ≺ a is ensured by the arc process a/b.

In a prefix α(x) or α(x), we say that extended name α is in subject position,
while x is in object position. As discussed in Section 1, extended names include
protected names, of the form {a}, which can be used in subject position only. We
call protected prefix a prefix where the subject is a protected name. A prefix of the
form [ϕ]τ is called a conditional τ , while other prefixes are called visible. Bound
and free names for prefixes are given by: bn([ϕ]τ) = ∅ and bn(α(x)) = bn(α(x)) =
{x}, fn([ϕ]τ) = n(ϕ), fn(α(x)) = fn(α(x)) = n(α) with n(a) = n({a}) = {a}.

In a sum process, we let I range over a finite set of integers. 0 is the inactive
process, defined as the empty sum. We use S to range over sum processes of the
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form Σi∈Iπi.Pi, and write π.P ∈ S if π.P is a summand of S. We sometimes
decompose sum processes using the binary sum operator, writing, e.g., S1 + S2

(in particular, S + 0 = S). We abbreviate π.0 as π, and write α(x).P simply as
α.P when the transmitted name is not relevant, and similarly for α. In (νa)P ,
(νa) binds a in P , and prefixes α(x) and α(x) bind x in the continuation process.
The set of free names of P , fn(P ), is defined in the usual way, and we work up to
α-conversion of processes. P{b/a} is the process obtained by substituting a with
b in P , in a capture-avoiding way.

We use an overloaded notation, and define processes representing conditions:

a g b , (νu)(u/a | u/b) a ≺ b , b/a .

Below, Γ ranges over sets of conditions. We define Γ ` ϕ, meaning that Γ implies
ϕ, and P B ϕ (we write P B Γ to express that P entails ϕ for all ϕ ∈ Γ ):

Γ ` a ≺ a
ϕ ∈ Γ
Γ ` ϕ

Γ ` b g a

Γ ` a g b

Γ ` a ≺ b
Γ ` b ≺ c
Γ ` a ≺ c

Γ ` a ≺ b
Γ ` c ≺ b
Γ ` a g c

Γ ` a ≺ b
Γ ` b g c

Γ ` a g c

a/bB b ≺ a
P B Γ Γ ` ϕ

P B ϕ

P B ϕ

P | QB ϕ

QB ϕ

P | QB ϕ

P B ϕ a /∈ n(ϕ)

(νa)P B ϕ

As an example, the reader might check that (νu)(u/a | u/b) | b/c B a g c.

Reduction Semantics and Barbed Congruence. The definition of structural con-
gruence, ≡, is standard. In particular, we have

Σi∈Iπi.Pi ≡ Σi∈Iπσ(i).Pσ(i) if σ is a permutation of I .

Relations ≡ and B are used to define the reduction of processes. We rely on B
to infer that two processes interact on joinable (extended) names. This allows
us to introduce reduction-closed barbed congruence, along the lines of [10].

Definition 1 (Reduction). Relation 7→ is defined by the following rules:

α(x).P ∈ S1 β(y).Q ∈ S2 RB α g β x 6= y

R | S1 | S2 7→ R | (νxy)(x/y | P | Q)

where:
a g {b} = {b} g a = a ≺ b
{a} g {b} = undefined

[ϕ]τ.P ∈ S RB ϕ

R | S 7→ R | P
P 7→ P ′

P | R 7→ P ′ | R
P 7→ P ′

(νa)P 7→ (νa)P ′
P ≡ 7→ ≡ P ′

P 7→ P ′

Definition 2 (Barbs, barbed congruence). We write P ↓a if P | a(x).ω 7→
P ′, where P ′ is a process in which ω is unguarded, and ω is a special name that
does not appear in P . We define similarly the barb ↓a, using the tester a(x).ω.

Barbed congruence, ', is the largest congruence that satisfies:

– if P ↓a and P ' Q then Q ↓a, and similarly for ↓a, and
– if P 7→ P ′ and P ' Q then for some Q′, Q 7→ Q′ and P ′ ' Q′.

We can remark that P0 ↓c, where P0 is the process defined in Section 1.

5



The remainder of the paper is devoted to the presentation of two character-
isations of '. We first comment on the definition of πP given above.

One could consider an alternative version of reduction, called “eager”, whereby
arcs can rewrite prefixes in one step of computation, yielding, e.g., d/c | c(x).P 7→
d/c | d(x).P . It appears in [10] that the present semantics is more compelling (for
instance a(x).a(y) would not be equivalent to a(x) | a(y) in the eager version).

Remark 3 (Encodability of free and protected prefixes).
In πP, arcs act like “instantaneous forwarders”. This allows us to define an

encoding [·]f from a calculus with free prefixes to a calculus with bound prefixes
as follows (x is chosen fresh):

[ab.P ]f , a(x).([P ]f | x/b) [ab.P ]f , a(x).([P ]f | b/x) ,

where [·]f preserves other operators of the calculi. We return to this encoding
below (Proposition 11), and show that it allows us to reflect behavioural equiv-
alence in [10] into our calculus.

We can also encode protected prefixes as follows (u is chosen fresh):

[{a}(x).P ]p , (νu)(u/a | u(x).[P ]p) [{a}(x).P ]p , (νu)(u/a | u(x).[P ]p) .

Although protected prefixes are in some sense redundant, we do not treat them
as derived operators, to simplify the presentation (in particular in Section 4).

The results of this paper (Sections 3 and 4) can be adapted to a calculus
featuring only free prefixes, and restriction as the only binder, like the calcu-
lus of [10]. This yields more complex definitions to handle bound prefixes and
protected actions, in particular when defining sum processes. We discuss in [11]
a presentation of transitions and bisimilarity based on free prefixes. It can be
noted that the axiomatisation of Fusions given in [16] relies only on free input
and output, and treats bound prefixes as derived operators. We think that, for
πP, handling prefixes for bound and protected actions as derived operators would
introduce further technical complications that would make the axiomatisation
more obscure.

3 A Labelled Transition System for πP

3.1 LTS and Bisimilarity

The LTS defines transitions P
µ−→ P ′, where the grammar for the labels, µ, is

the same as the one for prefixes π. We comment on the rules, given in Figure 1.
The first two rules correspond to the firing of visible prefixes. The transi-

tion involves a fresh name x, upon which the participants in a communication
“agree”. Name y remains local, via the installation of an arc, according to the
directionality of the prefix. (Adopting a rule with no arc installation would yield
a more complex definition of ∼). The rule for the [ϕ]τ prefix is self explanatory.
The rule describing communication follows the lines of the corresponding rule
for 7→; no arc is installed (but arcs are introduced in the prefix rules).

The three rules mentioning B are called preorder rules. The two preorder
rules for visible actions exploit ≺, which is defined for extended names (as we
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did for g above). Note that the condition involving B is the same in these two
rules. To understand these rules, and the role of protected actions, we recall the
basic intuition about arcs: an arc d/a can transform an interaction at a into an
interaction at d. For instance, from P

a(x)−−−→P ′ and P B a ≺ d, we can derive
P
d(x)−−−→P ′. As a consequence, an input at a can synchronise with an output at

b if both a and b can be “pulled upwards in the preorder”, using arcs, to some
name, say u, which is above a and b. Observe also that if, like in P above, the
input at a is transformed into an input at d, then a name u′ standing above d
and b can be used to let the synchronisation happen (because u′ would be above
a and b).

If, on the contrary, we want to replace, in the input, name a with a name
that sits below a, say c (like in process P0 from Section 1), we are moving
downwards in the preorder. Because of this, the action becomes protected, and
we can derive for instance P0

{c}(y)−−−→, because a(x).0 | a/c B c g a (and hence
a ≺ {c}). By going downwards, we have somehow fixed the channel where the
communication occurs (e.g., at a in Pfxu0). Indeed, it is no longer the case that
an output at b can synchronise with the protected input at c whenever some u
is above b and c, because such u would not necessarily be above a (where the
original input takes place) and b in the preorder. For this reason, we can only
move further downwards in the preorder, and for instance deduce, from P0

{c}(y)−−−→,
that P0

{c1}(y)−−−−→ as soon as c1 ≺ c (which implies {c} ≺ {c1}).
The other preorder rule can be used to modify conditional τs involved in a

transition. As an example, let P1 , (a(x).Q | n/u) | (u(y).R | n/a). Process P1

can perform a τ transition: the two arcs can, intuitively, let the output at a and
the input at u interact at name n. Technically, this can be derived by inferring
a [agu]τ−−−−→ transition (from the output on the left and the input on the right),
which can then be turned into a τ transition, exploiting the fact that the whole
process entails a g u. Finally, the congruence rules are as expected.

Definition 4 (∼). A symmetric relation R is a bisimulation if P R Q implies:

– If P B ϕ then QB ϕ.

– If P
α(x)−−−→ P ′, with x /∈ fn(Q), then there is Q′ such that Q

α(x)−−−→ Q′ and
P ′ R Q′; we impose the same condition with α instead of α.

– If P
[ϕ]τ−−→ P ′ then there is Q′ such that Q

[ϕ]τ−−→ Q′ and P ′ | ϕ R Q′ | ϕ.

Bisimilarity, written ∼, is the greatest bisimulation.

This definition can be related to the efficient bisimulation from [20]. In the
last clause, we add ϕ in parallel, since the transition is fired only if ϕ is satisfied.

Remark 5. Our LTS does not have rules for opening and closing the scope of a
restriction. Instead, we rely on arcs in πP to handle scope extrusion. To illustrate
this, consider the following πP transition where a a private name c is emitted:

a(c).P
a(x)−−−→ (νc)(c/x | P ) .

Name x is visible in the label, and arc c/x is installed. Through x, the envi-
ronment can affect c, so that πP actually implements scope extrusion via arcs,
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x /∈ n(α) ∪ {y} ∪ fn(P )

α(y).P
α(x)−−−→ (νy)(x/y | P )

x /∈ n(α) ∪ {y} ∪ fn(P )

α(y).P
α(x)−−−→ (νy)(y/x | P ) [ϕ]τ.P

[ϕ]τ−−→ P

P
α(x)−−−→ P ′ Q

β(x)−−−→ Q′

P | Q [αgβ]τ−−−−−→ (νx)(P ′ | Q′)

P
[ϕ2]τ−−−→ P ′ P B Γ Γ, ϕ1 ` ϕ2

P
[ϕ1]τ−−−→ P ′

P
α(x)−−−→ P ′ P B α ≺ β

P
β(x)−−−→ P ′

P
α(x)−−−→ P ′ P B α ≺ β

P
β(x)−−−→ P ′

a ≺ {b} = a g b
{a} ≺ {b} = b ≺ a
{a} ≺ b = undefined

P
µ−→ P ′ a /∈ fn(µ) ∪ bn(µ)

(νa)P
µ−→ (νa)P ′

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P | Q µ−→ P ′ | Q
πi.Pi

µ−→ P ′

Σiπi.Pi
µ−→ P ′

Fig. 1. LTS for πP. Symmetric versions of the two rules involving | are omitted.

without the need to move restrictions. We have:

a(c).P | a(y).Q
τ−→ (νx)((νc)(c/x | P ) | (νy)(x/y | Q))
' (νc)(νy)(P | c/y | Q) .

3.2 The Characterisation Theorem

Lemma 6. If P ≡ Q and P B ϕ then QB ϕ.

Definition 7. We define a relation vϕ between labels as follows: (i) α1(x) vϕ
α2(x) and α1(x) vϕ α2(x) when ϕ = α2 ≺ α1, and (ii) [ϕ1]τvϕ[ϕ2]τ when
ϕ1, ϕ ` ϕ2.We write vP for the smallest preorder containing all vϕ when P Bϕ.

Intuitively, ηvP µ means that label µ is less general than η, given some
condition (ϕ above) entailed by P . For instance, we have {a}(x)v0 a(x). This
notion is used in the following lemma to reason about transitions of processes.

Lemma 8. If P
µ−→ P ′ and ηvP µ then P

η−→ P ′. Conversely, whenever P
η−→ P ′,

there exists µ such that ηvP µ and P
µ−→ P ′, of which there is a proof, not bigger

than the one for P
η−→ P ′, that does not end with a preorder rule.

Congruence for parallel composition is proved using Lemma 8, which gives:

Lemma 9. Relation ∼ is a congruence.

Theorem 10 (Characterisation). P ' Q iff P ∼ Q.

Proof (Sketch). The proof follows a standard pattern: soundness is a consequence
of Lemma 9. For completeness, we have to show that contexts can express the
conditions in the three clauses of Definition 4, and we define accordingly tester
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processes. The first clause about ϕ is handled using process α.w1 | β.w2 where α
and β are such that ϕ = α g β. For transitions (second clause), the counterpart
of, e.g., {a}(x)−−−→, is given by tester process a(y).(z/y | w | w). We use process ϕ for

the third clause, since P [ϕ]τ−−→ Q iff P | ϕ τ−→ Q | ϕ. ut

As mentioned above, the calculus in [10] is a version of πP with prefixes for
free input and output, and without the corresponding bound prefixes. Let us call
that calculus πP1. The encoding [·]f, which we introduced in Remark 3, allows
us to embed πP1 into πP in a faithful way:

Proposition 11. P 'πP1 Q (in πP1) iff [P ]f ' [Q]f (in πP).

The proof of the above result exploits in a crucial way the fact that, although
πP1 does not feature sums and the [ϕ]τ prefix, those are not needed to prove the
completeness of ∼.

4 Axiomatisation

4.1 Equational Laws for Strong Bisimilarity

Notations and Terminology. We use A to range over processes that consist
of compositions of ϕ processes only, which we call preorder processes. We often
view such processes as multisets of conditions. We use notation A,P to denote a
process that can be written, using the monoid laws for parallel composition, as
A | P , where P does not contain toplevel arcs. Note that A may contain restric-
tions, but only those corresponding to the definition of join processes (given in
Section 2).

We write ` P = Q whenever P and Q can be related by equational reasoning
using the laws of Figure 2. We omit the standard laws expressing that | and +
obey the laws of commutative monoids, and that + is idempotent. We also omit
the laws for equational reasoning (equivalence, substitutivity). We will reason
up to these laws in the remainder.

Comments on the laws. Before presenting the properties of the axiomatisa-
tion, we comment on the laws of Figure 2 and illustrate them on some examples.

As usual, expansion (L1) allows us to rewrite the parallel composition of two
sum processes into a sum, the third summand describing synchronisation in πP.

Preorders. Laws L2-L5 express basic properties of relations ≺ and g, and actu-
ally provide an axiomatisation of ∼ for preorder processes.

Prefixes. Law L6 propagates ϕs in depth, expressing the persistence of condition
processes (ϕ). Law L7 is the counterpart of the third clause of Definition 4, and
describes the outcome of a [ϕ]τ transition. Similarly, laws L18-L19 correspond
to the firing of visible transitions in the LTS (regarding these rules, see also the
comments after Proposition 16).
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Expansion law (we can suppose x 6= y, bn(πi) /∈ fn(T ), bn(ρj) /∈ fn(S).)

L1 Σiπi.Pi︸ ︷︷ ︸
S

| Σjρj .Rj︸ ︷︷ ︸
T

= Σiπi.(Pi | T ) + Σjρj .(S | Rj)
when α g β is defined.

+ Σi,j [αgβ]τ.(νxy)(x/y | Pi | Rj) and {πi, ρj}={α(x), β(y)}
Laws for preorder processes

L2 a ≺ b | b ≺ c = a ≺ b | b ≺ c | a ≺ c L3 a ≺ b | c ≺ b = a ≺ b | c ≺ b | a g c

L4 a ≺ b | b g c = a ≺ b | b g c | a g c L5 a ≺ a = 0

Laws for prefixes (the counterparts of laws L11-L13 for output are omitted)

L6 ϕ, S + π.P = ϕ, S + π.(ϕ | P ) L7 [ϕ]τ.P = [ϕ]τ.(ϕ | P )

L8 [a ≺ a]τ.P = [b g b]τ.P

L9 [a g b]τ.P = [a g b]τ.P + [a ≺ b]τ.P
L10 [a g b]τ.P = [a g b]τ.P + [b g a]τ.P

L11 a(x).P = a(x).P + {a}(x).P
L12 b/a, S + a(x).P = b/a, S + a(x).P + b(x).P

L13 a/b, S + {a}(x).P = a/b, S + {a}(x).P + {b}(x).P

L14 b/a, S + [a ≺ c]τ.P = b/a, S + [a ≺ c]τ.P + [b ≺ c]τ.P
L15 a/b, S + [c ≺ a]τ.P = a/b, S + [c ≺ a]τ.P + [c ≺ b]τ.P
L16 b/a, S + [a g c]τ.P = b/a, S + [a g c]τ.P + [b g c]τ.P

L17 b/a, S + [a g c]τ.P = b/a, S + [a g c]τ.P + [c ≺ b]τ.P

L18 α(y).P = α(x).(νy)(x/y | P ) if x /∈ fn(P )

L19 α(y).P = α(x).(νy)(y/x | P ) if x /∈ fn(P )

Laws for restriction (the counterparts of laws L26 and L27 for output are omitted;
a ≺ b ∈ A6= stands for a ≺ b ∈ A and a 6= b, and similarly for a g b.)

L20 (νb)P = (νa)(P{a/b}) if a /∈ fn(P ) L21 (νc)(νd)P = (νd)(νc)P

L22 P | (νa)Q = (νa)(P | Q) if a /∈ fn(P ) L23 (νa)0 = 0

L24 (νa)A = {b ≺ c | b ≺ a, a ≺ c ∈ A6=} ] {b g c | b ≺ a, c ≺ a ∈ A6=}
] {b g c | a g c, b ≺ a ∈ A6=} ] {ϕ ∈ A | a /∈ n(ϕ)}

L25 (νa)(A, S+ π.P ) = (νa)
(
A, S + π.(νa)(A | P )

)
a /∈ n(π)

L26 (νa)(A, S+ a(x).P ) = (νa)
(
A, S +Σa≺b∈A6=b(x).(νa)(A | P )

+Σb≺a∈A6=
∨agb∈A6=

{b}(x).(νa)(A | P )
)

L27 (νa)(A, S+ {a}(x).P ) = (νa)
(
A, S +Σb≺a∈A6={b}(x).(νa)(A | P )

)
L28 (νa)(A, S+ [a ≺ c]τ.P ) = (νa)

(
A, S +Σa≺b∈A6= [b ≺ c]τ.(νa)(A | P )

)
a 6= c

L29 (νa)(A, S+ [c ≺ a]τ.P ) = (νa)
(
A, S +Σb≺a∈A6= [c ≺ b]τ.(νa)(A | P )

)
a 6= c

L30 (νa)(A, S+ [a g c]τ.P ) = (νa)
(
A, S +Σa≺b∈A6= [b g c]τ.(νa)(A | P ) a 6= c

+Σb≺a∈A6=
∨agb∈A6=

[c ≺ b]τ.(νa)(A | P )
)

Fig. 2. An axiomatisation of ∼
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α-conversion for input prefixes follows from laws L20 and L18, by deriving
the following equalities (and similarly for the other visible prefixes):

a(y).P
L18
= a(x).(νy)(x/y | P )

L20
= a(x).(νy′)(x/y′ | P{y′/y})

L18
= a(y′).P{y′/y} .

Laws L11-L17 can be used to expand process behaviours using the preorder:
arcs can modify the subject of visible prefixes (L11-L13) and the condition in [ϕ]τ
prefixes (L14-L17). Laws L9, L10 and L14-L17 rely on the defining properties of
relations ≺ and g. Finally, law L8 is used to equate all reflexive τ prefixes.

Restriction. Laws L20-L23 are standard. The other laws are used to “push”
restrictions inside processes. Due to the necessity to handle the preorder com-
ponent (A), they are rather complex.

Law L24 is used to eliminate a restriction on a name a in a preorder process,
by propagating the information expressed by all ϕs that mention a.

Law L25 is rather self-explanatory, and shows how the A component prevents
us from simply pushing the restriction downwards (under prefixes).

Laws L26-L30 describe a kind of “synchronous application” of the prefix
laws seen above. For instance, the two summands in law L26 correspond to
applications of laws L12-L13: as we push the restriction on a downwards, we
make sure that all possible applications of these laws are taken into account.

Intuitively, L24 is applied after laws L25-L30 have been used to erase all
prefixes mentioning the restricted name a, pushing the restriction on a inwards.

All in all, the set of laws in Figure 2 is rather lengthy. We make two comments
on this. First, it can be remarked that axiomatisations often treat restriction sep-
arately, by first focusing on a restriction-free calculus. In πP, because of preorder
processes, we cannot in general push restrictions on top of sum processes, so the
situation is more complex (see also the discussion about [14] in Section 5).

Second, we could have presented the laws in a more compact way, by writing
schemas. A uniform presentation for laws L8-L17 and L26-L30 is as follows:

η vA µ µ.P ∈ S
A, S = A,S + η.P

a ∈ fn(µ) ∀η vA µ a ∈ fn(η) ∨ ∃ρ η vA ρ ∧ ρ.P ∈ S
(νa)(A,µ.P + S) = (νa)(A,S)

(To remove µ.P from µ.P + S, the second rule requires that some ρ.P are in S.
The second rule can be used to add those summands to S.) We prefer nevertheless
to write all rules explicitly, since this is how they are handled in proofs.

Examples of derivable equalities. In the following examples, we sometimes
switch silently to notation A,P to ease readability. We also allow ourselves to
simplify some reasonings involving prefixes where the object is not important.
We explain how the following derivable between πP processes can be derived:

(νa)(b/a | a/c) = b/c (νa)(S+a(x).P ) = (νa)S

(νa)(a/b | a(x).P ) = {b}(x).(νa)P a(x).x = a(x).{x} a(x).{x} = a(x).0

11



The first equality above is established using law L24: before getting rid of the
restriction on a, we compute all conditions not involving a that can be deduced
from b/a | a/c. In this case, this is only b/c.

The second equality is a direct consequence of law L26. Law L26 is also used
for the third equality: only the second sum in the law is not empty, which gives
(νa)(a/b, a(x).P ) = (νa)(a/b, {b}(x).(νa)P ). Then, L22 allows us to restrict the
scope of νa, and we can get rid of (νa)a/b using law 24, which yields the result.

Another way to see the third equality is to observe that we can derive
a/b, a(x).P = a/b, a(x).P + {a}(x).P + {b}(x).P using laws L11 and L13. In the
latter process, the sum is intuitively expanded, in the sense that all derivable
toplevel summands have been made explicit. When considering the restricted
version of both processes, it is sound to push the restriction on a downwards
in the expanded process, to obtain the expected equality. In this sense, law L26
implements a “synchronous version” of this reasoning, so as to insure that when
pushing a restriction downwards, the behaviour of the process is fully expanded.

The next two equalities illustrate the meaning of protected names. We reason

as follows: a(x).x
L19
= a(x′).(νx)(x/x′, x)

L26
= a(x′).(νx)(x/x′, {x′}.(νx)(x/x′ | 0)).

We then obtain the expected equality by getting rid of (νx)x/x′, twice, using
laws L22 and L24. The reason why this equality holds is that fresh name x is
emitted without the context having the ability to interact at x, since x will never
be under another name in an arc. Therefore, the input at x is equivalent to a
protected input.

In the last equality, because of the transition a(x).{x} a(x
′)−−−→(νx)(x′/x | {x}),

x will never be above another name, so that the prefix {x} cannot be triggered,
and is equivalent to 0. This equality is derived as follows:

a(x).{x}
L18
= a(x′).(νx)(x′/x | {x}) L27= a(x′).(νx)x′/x

L24
= a(x′).0 .

(we have explained above how a(x′).0 = a(x).0 can be derived).

We leave it to the reader to check that the law for interleaving, presented
in Section 1, can be derived using the expansion law, followed by the rules for
prefixes and restriction to get rid of the summand [x g y]τ.(νt, u)(t/u).

4.2 Soundness and Completeness of the Axioms

Lemma 12 (Soundness). The laws of Figure 2 relate bisimilar processes.

Proof (Sketch). For laws 24-30, we establish a “saturation property”, expressing
the fact that when erasing a preorder process ϕ or a prefix π that mentions a,
we generate all processes ϕ or π could induce. The other laws are easy. ut

Auxiliary Results: Preorder Processes, Prefixes, Restriction.
In order to establish completeness, we first need some technical results, given

by Propositions 13, 16 and 17.
First, laws L2-L5 can be used to saturate preorder processes:

12



Proposition 13. If A1, S1 ∼ A2, S2, then there exists A? such that ` Ai, Si =
A?, Si (i = 1, 2), and A? =

∏
{ϕ | ϕ not reflexive and A1 B ϕ}.

(Note that we could have picked A2 instead of A1 above.) We say that A is
a saturated preorder process whenever A? ≡ A. We use A? to range over such
processes. We can remark that even if A contains only arcs, A? may contain
restrictions, because of induced conditions involving g.

The next lemma relates transitions of sum processes and the laws for prefixes.

Lemma 14. If A,S
µ−→ A,P then ` A,S = A,S + π.Q for some π and Q such

that µ and π only differ in their bound names and π.Q
µ−→ P .

Laws L9-L17 can be used to “saturate” the topmost prefixes in sums. We ex-
press this using the equivalence below, and rely on Lemma 14 to prove Prop. 16:

Definition 15 (Head sum normal form, �h). Given two sum processes S
and T , we write S ≺h T whenever for any summand π.P of S, there exists a
summand π.Q of T with π.P ∼ π.Q. We let S �h T stand for S ≺h T ∧ T ≺h S.

Proposition 16. Whenever A?, S1 ∼ A?, S2, where S1, S2 are two sum pro-
cesses, there are S′

1, S
′
2 s.t. ` A?, Si = A?, S′

i (for i = 1, 2) and S′
1 �h S′

2.

In the definition of ≺h, we impose π.P ∼ π.Q, and not simply P ∼ Q. The
equivalence induced by the choice of the latter condition would indeed be too
discriminating. To see why, consider Q1 = a(x).c/x and Q2 = a(x).0. Obviously,
c/x 6∼ 0. On the other hand, we have Q1 ∼ Q2: after a a(y)−−−→ transition on both
sides, we must compare (νx)(c/x | y/x) and (νx)(y/x), and both are bisimilar to 0.
In order to derive ` Q1 = Q2, we rely on the following property, which explains
the shape of laws L18, L19: a(y).P ∼ a(y).Q iff (νy)(x/y | P ) ∼ (νy)(x/y | Q).

Proposition 17 expresses that restrictions can be pushed inwards in processes.
It introduces a notion of measure on processes that is useful to reason by induc-
tion on processes in the completeness proof:

Proposition 17. We define |P | as follows: |Σiπi.Pi| = maxi (1 + |Pi|) |(νa)P | =
|P |, |P | Q| = |P |+ |Q|, and |a/b| = 0.

For any A,S, a, there exist A′ and S′ such that ` (νa)(A,S) = A′, S′ and
|(νa)(A,S)| ≥ |A′, S′|.

Establishing Completeness. The grammar P ::= A,Σiπi.Pi
∣∣ (νa)P defines

what we call |-free processes: only arcs are composed, and the non-preorder part
of processes is a sum.

Proposition 18. For all |-free processes P and Q, P ∼ Q iff ` P = Q.

Proof (Sketch). The ‘if’ part follows from Lemmas 9 and 12. Suppose now
P ∼ Q; we reason by induction on |P |+ |Q|. By Propositions 17, 13 and 16, we
obtain ` P = A?, S1 and ` Q = A?, S2, for some A, S1, S2 such that S1 �h S2.

13



We then consider a(x).T1 ∈ S1 and a(x).T2 ∈ S2 s.t. a(x).T1 ∼ a(x).T2. The
latter yields, by triggering the input transition, (νx)(y/x | T1) ∼ (νx)(y/x | T2).
By induction we derive ` (νx)(y/x | T1) = (νx)(y/x | T2) from which we get
` a(x).T1 = a(x).T2 by law L18.

The other kinds of prefixes are handled similarly. This reasoning allows us to
prove ` S1 = S2 and hence ` P = Q. ut

The expansion law yields the following result, which then gives Theorem 20.

Lemma 19. For any P , there exists a |-free process Q s.t. ` P = Q.

Theorem 20 (Axiomatisation of ∼). For all P and Q, P ∼ Q iff ` P = Q.

Remark 21 (Normal forms). The proofs of the results in this section suggest
that we can define a strategy to apply the rules of Figure 2, in order to rewrite
a πP process P to its normal form, nf(P ), so that P ∼ Q iff nf(P ) = nf(Q). We
leave the rigorous description of this normalisation procedure for future work.

4.3 Adapting our Axiomatisation to Explicit Fusions

We can reuse the ideas presented above to describe an axiomatisation for barbed
congruence in Explicit Fusions (EF, [20]). EF feature fusion processes, of the form
a=b, which can equate names via ≡: we have a=b | P ≡ a=b | P{b/a}.

Like in πP, we work with three kinds of prefixes, a(x), a(x) and [a=b]τ , the
latter being the counterpart of [ϕ]τ in πP (it appears, e.g., in [20]).

The “state component” of processes is simpler in EF than in πP, since fusions
implement an equivalence relation on names. The laws of Figure 2 can be ported
to EF, yielding an axiomatisation. We only discuss some relevant laws, and refer
to [11] for a complete definition. The laws for fusion processes are

a=a = 0 a=b | a=c = a=b | a=c | b=c a=b = b=a ,
and the EF counterpart of (some of) the laws for prefixes in πP is given by

a=b | a(x).P = a=b | b(x).P a=b | [a=c]τ.P = a=b | [b=c]τ.P
(laws L6-L7 are inherited directly, ϕ denoting fusions). Because fusions satisfy
transitivity, every fusion can be eliminated if one of its names is restricted, as
(νa)(a=b | P ) ∼ P{b/a}. This makes the laws for restriction much simpler than
in πP:

(νa)a=b = 0 (νa)Σiπi.Pi = Σi|a/∈n(πi)πi.(νa)Pi .

5 Conclusions and Future Work

Working with a preorder on names has an influence on the behavioural theory
of πP, notably through the interplay between arcs and restrictions. The preorder
relation is represented explicitly in πP processes, using arcs. We do not see any
natural “implicit version” of πP, mimicking the relation between Explicit Fusions
and Fusions, whereby the extension of the preorder along a communication would
not generate an arc process.
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The stateful nature of the preorder component of πP processes can be related
to frames in the applied π-calculus [1] and Psi-calculi [2]. Arcs in πP can be seen
in some sense as substitutions, but they differ from the active substitutions of
applied π. The latter map variables to terms, while, in the tradition of fusion
calculi, we only have (channel) names in πP. Moreover, several arcs acting on the
same name are allowed in πP, while a substitution acts on at most one variable
in applied π. For these reasons, the behavioural theories of πP and applied π are
rather different. Liu and Lin’s proof system for applied π [14] departs from our
axiomatisation for πP, but has in common the stateful component of processes.

Psi-calculi can represent the active substitutions of applied π. It would be
interesting to study whether arcs, and the preorder between names, can be rep-
resented in the setting of Psi-calculi. An important technical point to address
in this perspective is whether transitivity of (generalised) channel equivalence
in Psi-calculi would conflict with the fact that name joinability is not transi-
tive in πP. Another important feature of Psi-calculi is that they come with a
fully mechanised metatheory: this is clearly something that πP is lacking at the
moment.

The behavioural theory of πP is based on an operational account. An in-
triguing question is the construction of a denotational model for πP, and the
comparison with known models for π and Fusions. We would also like to study
the weak version of behavioural equivalence.

The results of this work provide foundations for the behavioural theory of
the πP calculus, which also has i/o-types (cf. [10]). As already mentioned, typed
behavioural equivalence [17,6] can be used to establish fine behavioural proper-
ties of concurrent systems. We would like to find out whether it can be helpful
to refine untyped analyses of systems where Fusions have been used.
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