
Information and Computation 251 (2016) 335–360
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Name-passing calculi: From fusions to preorders and types

Daniel Hirschkoff a,c,∗, Jean-Marie Madiot a, Davide Sangiorgi b

a Université de Lyon, ENS Lyon, CNRS, INRIA, France
b INRIA and Università di Bologna, Italy
c LIP, ENS Lyon, site Monod, 46, allée d’Italie, 69364 Lyon Cedex 7, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2014
Received in revised form 20 May 2016
Available online 19 October 2016

Keywords:
Process calculus
Type system
Subtyping
Behavioural equivalence
Expressiveness

The fusion calculi are a simplification of the pi-calculus in which input and output are
symmetric and restriction is the only binder. We highlight a major difference between
these calculi and the pi-calculus from the point of view of types, proving some impossi-
bility results for subtyping in fusion calculi. We propose a modification of fusion calculi
in which the name equivalences produced by fusions are replaced by name preorders, and
with a distinction between positive and negative occurrences of names. The resulting cal-
culus allows us to import subtype systems, and related results, from the pi-calculus. We
examine the consequences of the modification on behavioural equivalence (e.g., context-
free characterisations of barbed congruence) and expressiveness (e.g., full abstraction of
the embedding of the asynchronous pi-calculus).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The π -calculus is the paradigmatical name-passing calculus, that is, a calculus where names (a synonym for “channels”)
may be passed around. Key aspects for the success of the π -calculus are the minimality of its syntax and its expressive-
ness. The π -calculus (often simply referred to as ‘π ’) is notably able to represent functions, objects, and various kinds of
distributed systems and protocols. This expressiveness comes at a price: often, desirable behavioural properties, or algebraic
laws, fail. The reason is that, when employing π -calculus to describe a system, one normally follows a discipline that gov-
erns how names can be used. The discipline can be made explicit by means of types. Types bring in other benefits, notably
the possibility of statically detecting many programming errors. Types are indeed a fundamental aspect of the π -calculus
theory, and one of the most important differences between name-passing calculi and process calculi such as CCS in which
names may not be passed.

One of the basic elements in type systems for name-passing calculi is the possibility of separating the capabilities for
actions associated to a name, e.g., the capability of using a name in input or in output. The control of capabilities has
behavioural consequences, because it allows one to express constraints on the use of names.

For a simple example, consider a process P that implements two distinct services FACT and EXP, to compute the
factorial and the self-exponentiation (n �→ nn) of an integer. The two services are accessible using channels fact and exp,
that must be communicated to clients of the services. We assume here only two clients, that receive the channels via c1
and c2:

P � (νfact,exp)
(
c1〈fact,exp〉.c2〈fact,exp〉.(FACT | EXP)

)
(1)

* Corresponding author at: LIP, ENS Lyon, site Monod, 46, allée d’Italie, 69364 Lyon Cedex 7, France.
E-mail address: Daniel.Hirschkoff@ens-lyon.fr (D. Hirschkoff).
http://dx.doi.org/10.1016/j.ic.2016.10.003
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:Daniel.Hirschkoff@ens-lyon.fr
http://dx.doi.org/10.1016/j.ic.2016.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.10.003&domain=pdf

336 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
We expect that outputs at fact or exp from the clients are eventually received and processed by the appropriate service.
This is however not necessarily the case: a malign client can disrupt the expected protocol by simply offering an input at
fact or exp and then throwing away the values received, or forwarding the values to the wrong service. These misbe-
haviours are ruled out by a capability type system imposing that the clients only obtain the output capability on the names
fact and exp, when receiving them from c1 and c2. The typing rules for capabilities are straightforward [31], and mimic
those for the typing of references in imperative languages with subtyping.

The control of capabilities is at the basis of more complex type systems, with a finer control on names. For instance,
type systems imposing constraints on successive usages of the names like usage-based type systems and deadlock-detection
systems, session types, and so on [21,22,17].

Capabilities are closely related to subtyping. In the example (1), P creates names fact and exp, and possesses both the
input and the output capabilities on them; it however transmits to the clients only a subset of the capabilities (namely the
output capability alone). The subset relation on capabilities gives rise to a subtype relation on types. All forms of subtyping
for the π -calculus or related calculi in the literature require a discipline on capabilities. Subtyping can also be used to
recover well-known forms of subtyping in other computational paradigms, e.g., functional languages or object-oriented
languages, when an encoding of terms into processes is enhanced with an encoding of types [33].

Numerous extensions or variants of the π -calculus have been proposed, for various reasons: tailoring the calculus to
specific application domains, like security, systems modelling, or distributed programming, adding orthogonal features such
as locations, facilitating implementations. An interesting family of variants of the π -calculus are — what we call here —
the fusion calculi: Fusions [29], Update [28], Explicit Fusions [34], Chi [9], Solos [24]. The beauty of fusion calculi is the
simplification achieved by removing binding from the input construct. Thus input prefixing becomes symmetric to output
prefixing, and restriction remains as the only binder.

In fusion calculi, the effect of a synchronisation between an output ab.P and an input ac.Q is to fuse the two object
names b and c, which become interchangeable. Thus communications produce, step-by-step, an equivalence relation on
names. Existing fusion calculi differ in the way the name equivalence is handled. The operational theories of these calculi
(behavioural equivalences and algebraic theory), and their implementation, have been widely studied, see e.g. [29,11,30,7,2].
Expressiveness is not affected when moving from π to fusion calculi. In certain cases, actually, the free input brings even
extra power. For instance it can yield a simple representation of delayed input, and of strong reduction strategies of the
λ-calculus. Such behaviours can be encoded in π only under certain syntactical constraints, and in a rather indirect way [26].

Like in the case of the π -calculus, however, the expressiveness of fusion calculi makes desirable behavioural properties
fail. For instance, the problems of misbehaving clients in (1) remain. Actually, in fusion calculi additional problems arise; for
example a client receiving the two channels fact and exp along ci could fuse them using an input ci〈n,n〉.R . Now fact
and exp are indistinguishable, and a request to one of these services can reach any of the two (moreover, if the definition
of a service involves recursion, a recursive call could be redirected towards the other service).

In this work, we study the addition of types to fusion calculi; more generally, to single-binder calculi, where input is
not binding (fusion calculi are single-binder, and, in addition, reductions fuse names). We begin by highlighting a striking
difference between the π -calculus and fusion calculi. We present impossibility results for subtyping (and hence for general
capability-based type systems, implicitly or explicitly involving subtyping) in fusion calculi. In the statement of these results,
we assume a few basic properties of type systems for name-passing calculi, such as strengthening, weakening and type
soundness, and the validity of the ordinary typing rules for the base operators of parallel composition and restriction.

These results do not rule out completely the possibility of having subtyping or capabilities in fusion calculi, because of
the few basic assumptions we make. They do show, however, that such type systems with subtyping and capabilities would
have to be more complex than those for ordinary name-passing calculi such as the π -calculus, or require modifications or
constraints in the syntax of the calculi. We actually present one of such systems in Section 7.2, for a subset of the calculus
of Fusions.

The main goal of the paper is to understand how type systems from the π -calculus can be adapted to a single-binder
calculus. Intuitively, the impossibility of adapting capability types to fusion calculi arises because at the heart of the op-
erational semantics for fusion calculi is an equivalence relation on names, generated through name fusions. In contrast,
subtyping and capability systems are built on a preorder relation (be it subtyping, or set inclusion among subsets of ca-
pabilities). The equivalence on names forces one to have an equivalence also on types, instead of a preorder. The crux of
our solution is to replace the equivalence on names with a preorder, and a distinction on occurrences of names, between
‘positive’ and ‘negative’.

In the resulting single-binder calculus, πP (‘π with Preorder’), reductions generate a preorder. The basic reduction rule
is

ca.P | cb.Q −→ P | Q | a/b .

The particle a/b, called an arc, sets a to be above b in the name preorder. Such a process may redirect a prefix at b to
become a prefix at a.

As a by-product of our analysis, we introduce a notion of polarity in the usage of names in πP. Negative usages of names
intuitively correspond to situations in which a name can be replaced by another. In particular, b occurs in negative position
in a/b. This is also the case when b occurs in input object position, like in prefix cb above. Other occurrences of names,

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 337
including subject of prefixes, are positive. Note that the binding input construct of the π -calculus can be represented in our
calculus, and in doing so, a(x).P is translated into a πP process where x occurs negatively.

We show that the I/O (input/output) capability systems of the π -calculus can be adapted to πP. The adaptation is the
result of a generalisation of the typing rules of the π -calculus, that takes into account the negative and positive occurrences
of names. A better understanding of type systems with subtyping in name-passing calculi is a by-product of this study. For
instance, the study suggests that it is essential for subtyping that substitutions produced by communications (in πP, the
substitutions produced by arcs) only affect the positive occurrences of names.

The modification from fusion calculi to πP also brings in behavioural differences. For instance, both in the π -calculus
and in πP, a process that creates a new name a can have the guarantee that a will remain different from all other known
names, even if a is communicated to other processes (only the creator of a can break this, by using a in negative position).
This is not true in fusion calculi, where the emission of a may produce fusions between a and other names.

We present two possible semantics for πP. They differ on the moment arcs enable substitutions. In the eager semantics,
arcs may freely act on prefixes; in the by-need semantics, arcs act on prefixes only when interactions occur. The eager
semantics mainly serves as a decomposition of the by-need semantics into basic rewriting steps, yielding simpler proofs.
We provide a characterisation of the reference contextual behavioural equivalence (barbed congruence) as a context-free
labelled bisimilarity for the by-need semantics. We also compare and contrast the semantics, both between them and with
semantics based on name fusions.

We then analyse the expressiveness of name preorders, by comparing πP with other name passing calculi. To demon-
strate the proximity with the π -calculus, we show that the embedding of the asynchronous π -calculus into πP is fully
abstract (full abstraction of the encoding of the π -calculus into fusion calculi fails). We also exhibit an encoding of Explicit
Fusions into πP, where fusions are translated into pairs of arcs.

We conclude by examining the following syntactic constraint in single-binder calculi: each name, say b, may occur at
most once in negative position (this corresponds to input object, as in ab.P , or to the source of an arc, as in a/b). Under
this constraint, the two semantics for πP, eager and by-need, coincide. In fusion calculi, the constraint allows us to import
the I/O type systems from π . The constraint is however rather strong, and, in fusion calculi, breaks the semantic duality
between inputs and outputs, whereby input and output prefixes can be swapped.

Further related work. Capability types and subtyping for processes have been introduced in [31], and used in many type
systems, like, e.g., in [13], notably yielding typed behavioural equivalences. We do not address richer forms of types in our
paper, like, e.g., behavioural types [17] or semantic subtyping [5]. Central to πP is the preorder on names, that breaks the
symmetry of name equivalence in fusion-like calculi. In Update [28] and (asymmetric versions of) Chi [9], reductions produce
ordinary substitutions on names. In practice, however, substitutions are not much different from fusions: a substitution {a/b}
fuses a with b and makes a the representative of the equivalence class. Still, substitutions are directed, and in this sense
Update and Chi look closer to πP than the other fusion calculi. Update was refined to the fusion calculus [29] because of
difficulties in the extension with polyadicity. Another major difference for Update and Chi with respect to πP is that in
the former calculi substitutions replace all occurrences of names, whereas πP takes into account the distinction between
positive and negative occurrences.

The question of controlling the fusion of private names has been addressed in the U-calculus [3]. This calculus makes
no distinction between input and output, and relies on two forms of binding to achieve a better control of scope extrusion,
leading to a sensible behavioural theory that encompasses Fusions and π . Thus the calculus is not single-binder. It is unclear
how capability types could be defined in the U-calculus, as it does not have primitive constructs for input and output.

This paper is an extended version of [14]. With respect to that work, we provide here more detailed definitions and
proofs, especially in Sections 5 and 6. Additionally, some results in Section 6 (about the relationship between πP and some
fusion calculi) were not given in [14].

Paper outline. Section 2 gives some background. In Section 3, we present our impossibility results on type systems for
fusion-like calculi. Section 4 defines πP and its type system. The behavioural theory of πP is explored in Section 5, and we
give some expressiveness results in Section 6. Section 7 studies the syntactical restriction mentioned above (unique negative
occurrence of names), which can be applied to πP and Fusions. We discuss future work in Section 8.

2. Background on name-passing calculi

In this section we group terminology and notation that are common to all the calculi discussed in the paper. For simplic-
ity of presentation, all calculi in the paper are finite. The addition of operators like replication for writing infinite behaviours
goes as expected. The results in the paper would not be affected.

We informally call name-passing the calculi in the π -calculus tradition, which have the usual constructs of parallel
composition and restriction, and in which computation is interaction between input and output constructs. Names identify
the pairs of matching inputs/outputs, and the values transmitted may themselves be names. Restriction is a binder for
the names; in some cases the input may be a binder too. Examples of these calculi are the π -calculus, the asynchronous
π -calculus [16,4], the Join calculus [8], the Distributed π -calculus [12], the fusion calculus [29], and so on. Binders support
the usual alpha-conversion mechanism, and give rise to the usual definitions of free and bound names.

338 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
We use a, b, . . . to range over names. In a free input ab.P , bound input a(b).P , output ab.P , we call a the subject of the
prefix, and b the object. We sometimes abbreviate prefixes as a.P and a.P when the object carried is not important. We
omit trailing 0, for instance writing ab in place of ab.0. We write P {a/b} for the result of applying the substitution of b
with a in P .

Calculi having fusions. When restriction is the only binder (hence the input construct is not binding), we say that the calculus
has a single binder.

If in addition interaction involves fusion between names, so that we have

(νc) (ab.P | ac.Q | R) =⇒ (P | Q | R){b/c} , (2)

we say that the calculus has name-fusions, or, more briefly, has fusions. In (2), we suppose that the calculus comes with
a reduction relation (which usually is closed under structural congruence), and =⇒ stands for an arbitrary number of
reduction steps. Moreover, when the calculus has no prefixes, as it is the case in Solos, we omit P and Q .

(We are not requiring that (2) is among the rules of the operational semantics of the calculus, just that (2) holds. The
shape of (2) has been chosen so to capture the existing calculi; the presence of R allows us to capture also the calculus of
Solos.) It is intended that calculi with name-fusions have a single binder.

In this sense, all single-binder calculi in the literature (Update [28], Chi [9], Fusions [29], Explicit Fusions [11], Solos [24])
have fusions. In Section 4 we will introduce a single-binder calculus without fusions. We shall add another element to this
family in Section 4, in which, in contrast with existing calculi in the family, interaction does not involve fusion of names.

In all calculi in the paper, (reduction-closed) barbed congruence will be our reference behavioural equivalence. Its defi-
nition only requires a reduction relation, −→, and a notion of barb on names, ↓a . Intuitively, a barb at a holds for a process
if that process can accept an offer of interaction at a from its environment.

Definition 1 (Reduction-closed barbed congruence). Let L be a process calculus, in which a reduction relation −→L and barb
predicates ↓L

a , for each a in a given set of names, have been defined. A relation R on the processes of L is:

• context-closed if P R Q implies C[P] R C[Q] for each context C of L;
• barb-preserving if P R Q implies that for any name a, P ↓L

a implies Q ↓L
a ;

• reduction-closed if P R Q and P −→L P ′ imply there is Q ′ such that Q −→L Q ′ and P ′ R Q ′ .

Then reduction-closed barbed congruence in L, written
L, is the largest symmetric relation on the processes of L that is
context-closed, reduction-closed, and barb-preserving.

The weak version of the equivalence, weak reduction-closed barbed congruence, written �L, is defined in the usual way,
replacing the relation −→L with its reflexive and transitive closure =⇒L , and the barbs ↓L

a with the weak barbs ⇓L
a ,

where ⇓L
a is the composition of the relations =⇒L and ↓L

a (i.e., the barb is visible after some internal actions).

3. Typing and subtyping with fusions

We consider typed versions of languages with fusions. We show that in such languages it is impossible to have a
non-trivial subtyping, assuming a few simple and standard typing properties of name-passing calculi.

We use T , U to range over types, and �, � to range over type environments, i.e., partial functions from names to types.
We write dom(�) for the domain of �, that is, the set of names on which � is defined. In name-passing calculi, a type
system assigns a type to each name. Typing judgements are of the form � � P (process P respects the type assignments
in �), and � � a : T (name a can be assigned type T in �).1

The following are the standard typing rules for the operators of parallel composition and restriction in name-passing
calculi:

� � P1 � � P2

� � P1 | P2

�, x : T � P

� � (νx) P
(3)

The first rule says that any two processes typed in the same type environment can be composed in parallel. The second
rule handles name restriction.

In resource-sensitive type systems, i.e., those for linearity [23,20] and receptiveness [33], where one counts certain oc-
currences of names, the rule for parallel composition has to be modified. As mentioned earlier, in this paper we stick to
basic type systems, ignoring resource consumption.

1 We consider in this paper basic type systems and basic properties for them; more sophisticated type systems exist where processes have a type too,
e.g., behavioural type systems.

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 339
In name-passing calculi, the basic type construct is the channel (or connection) type � T . This is the type of a name that
may carry, in an input or an output, values of type T . Consequently, we also assume that the following rule for prefixes
ab.P and ab.P is admissible:

�(a) = � T �(b) = T � � P

� � α.P
α ∈ {ab,ab} (4)

(Here we consider input and output prefixes with a continuation; in calculi in which prefixes may not have a continuation,
e.g., the asynchronous π -calculus or Solos, P would be missing from the rules.) In the rule, the type of the subject and of
the object of the prefix are compatible.

Again, these need not be the typing rules for prefixes; we are just assuming that the rules are valid in the type system.
We can observe that the standard rule for prefix would have, as hypotheses,

� � a : � T � � b : T .

These imply, but are not equivalent to, the hypotheses in (4), for instance in presence of subtyping.
Fundamental properties of type systems are:

• Subject Reduction (or Type Soundness): if � � P and P → P ′ , then � � P ′;
• Weakening: if � � P and a is fresh, then �, a : T � P ;
• Strengthening: whenever �, a : T � P and a is fresh for P , then � � P ;
• Closure under injective substitutions: if �, a : T � P and b is fresh, then �, b : T � P {b/a}.

Definition 2. A typed calculus with single binder is plain if it satisfies Subject Reduction, Weakening, Strengthening, Closure
under injective substitutions, and the typing rules (3) and (4) are admissible.

If the type system admits subtyping, then another fundamental property is narrowing, which authorises, in a typing
environment, the specialisation of types:

• Narrowing: if �, a : T � P and U ≤ T then also �, a : U � P .

When narrowing holds, we say that the calculus supports narrowing.
A typed calculus has trivial subtyping if, whenever T ≤ U , we have �, a : T � P iff �, a : U � P . When this is not the case

(i.e., there are T , U with T ≤ U , and T , U are not interchangeable in all typing judgements) we say that the calculus has
meaningful subtyping.

Standard i/o-types for the π -calculus provide an example of meaningful subtyping: we have for instance � T ≤ oT , and
these types are not interchangeable in all typing derivations.

We are now ready to prove that, under the assumptions of Definition 2, a calculus with fusions may only have trivial
subtyping.

Theorem 3. A typed calculus with fusions that is plain and supports narrowing has trivial subtyping.

Proof. We define the following context:

E � (νc,b)(ub | uc | va | vc | [·]) .

Note that in E we only use b as an output object (in ub). The intention is that, given some fresh names, u, v , c, and some
process P , E[P] should reduce to P {a/b}. Indeed, by applying hypothesis (2) twice, we have

E[P] = (νb, c)(ub | uc | va | vc | P) =⇒ (νb)(va | vb | P {b/c})
= (νb)(va | vb | P)

=⇒ P {a/b} .

Suppose U ≤ T , we show �,a : T � P iff �, a : U � P , which means that the type system has trivial subtyping. The
implication from left to right is narrowing.

To prove the implication from right to left, suppose �, a : U � P , and prove �, a : T � P . We can pick some name b fresh
for P , and deduce, by Closure under injective name substitution, �, b : U � P {b/a}.

In the typing environment �, b:U , u:� T , v:� T , c:T , a:T the process ub is well-typed thanks to Narrowing and Weakening,
hence so is (ub | uc | va | vc | P {b/a}). By the restriction rule we get �, a:T , u:� T , v:� T � E[P {b/a}], the latter reducing to
P {b/a}{a/b} by (2). Since b has been taken fresh, P {b/a}{a/b} = P . Hence, by Subject Reduction, �, a:T , u:� T , v:� T � P . We
finally deduce �, a : T � P by Strengthening. �

340 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
One may wonder whether, in Theorem 3, more limited forms of narrowing, or a narrowing in the opposite direction,
would permit some meaningful subtyping. Narrowing is interesting when it is used to modify the type of the values ex-
changed along a name, that is, the type of the object of a prefix. (In process calculi, communication is the analog of
application for functional languages, and changing the type of a prefix object is similar to changing the type of a function
or of its argument.) In other words, disallowing narrowing on objects would make subtyping useless. We now show that
allowing any form of narrowing, on one prefix object, would force subtyping to be trivial.

Theorem 4. We consider a typed calculus with fusions which is plain. We suppose that there is at least one prefix α with object b, where
b is different from the subject of α. We further suppose that there are two types S and T such that S ≤ T and one of the following forms
of narrowing holds for all �:

(1) whenever �, b : T � α.0, we also have �, b : S � α.0;
(2) whenever �, b : S � α.0, we also have �, b : T � α.0.

Then S and T are interchangeable in all typing judgements.

As a consequence, authorising one of the above forms of narrowing for all S and T such that S ≤ T implies that the
calculus has trivial subtyping.

Proof. For all � we prove that �, x : T � P iff �, x : S � P . Let x1, x2, a1 and a2 be fresh names, we define

�i � �, xi : T , x3−i : S .

We prove that �i � P {x1/x} implies �i � P {x2/x} for all i ∈ {1, 2}. This is enough to conclude, using Weakening, Strength-
ening and Closure under injective substitutions. We rely on process D � a1x1 | a2x2 | a1 y | a2 y to simulate the substitution
of x1 with x2:

(νx1, y)(D | P {x1/x}) =⇒ P {x2/x} . (5)

This way, it is enough to find some types Ta1 Ta2 , T y such that �′ � D , with �′ = �i , a1 : Ta1 , a2 : Ta2 , y : T y . We suppose
that the subject of α is either a1 or a2, picking the most suitable choice, without loss of generality. We suppose as well that
the object b is the most suitable among x1, x2 or y.

To illustrate how we choose such types, we provide an example. Suppose: that i = 1 (i.e., the type of x1 is T and the
type of x2 is S), that narrowing of type (1) holds, and that α is an output. Then we take α to be a2x2 and we choose
Ta1 = Ta2 = � T and T y = T . We then have �′ � D quite easily: the interesting part is to obtain a2 : � T , x2 : S � a2x2 from
the composition of the trivial a2 : � T , x2 : T � a2x2 and from narrowing of type (1). Then, by Subject Reduction, with (5)
and Strengthening, we get that �1 � P {x2/x}. This particular case corresponds to the first line of the following table.

The other choices for Ta1 Ta2 , and T y are listed in the table, following three parameters: is i equal to 1 or to 2? Which
form of narrowing, between (1) and (2), holds? Is α an output or an input?

i form α Ta1 Ta2 T y

1 (1) a2x2 � T � T T
1 (1) a1 y � T � S S
1 (2) a1x1 � S � S S
1 (2) a2 y � T � S T
2 (1) a2x2 � T � T T
2 (1) a2 y � S � T S
2 (2) a1x1 � S � S S
2 (2) a1 y � S � T T

Using the hypothesis on α, we can prove in all these cases that �′ � D , relying on the fact that the type system is plain.
The latter hypothesis also gives us �′ � P {x1/x}. We use rules from (3) and Subject Reduction to deduce that �′ � P {x2/x}.
From this, Strengthening is enough to conclude. �
Remark 5. Theorems 3 and 4 apply to all fusion calculi: Fusions, Explicit Fusions, Update, Chi, Solos.

In calculi of mobile processes, the basis for having subtyping is a type system for capabilities, usually the input/output
(I/O) capabilities [31,13]. Another consequence of Theorems 3 and 4 is that it is impossible, in plain calculi with fusions, to
have an I/O type system; more generally, it is impossible to have any capability-based type system that supports meaningful
subtyping.

Actually, to apply the theorems, it is not even necessary for the capability type system to have an explicit notion of
subtyping. For Theorem 3, it is sufficient to have sets of capabilities with a non-trivial ordering under inclusion, meaning

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 341
that we can find two capability types T and U such that whenever �, a : U � P holds then also �, a : T � P holds, but
not the converse (e.g., T provides more capabilities than U). We could then impose a subtype relation ≤ on types, as
the least preorder satisfying T ≤ U . Theorem 3 then tells us that type soundness and the other properties of Definition 2
would require also U ≤ T to hold, i.e., T and U are interchangeable in all typing judgements. In other words, the difference
between the capabilities in T and U has no consequence on typing. Similarly, to apply Theorem 4 it is sufficient to find two
capability types T and U and a single prefix in whose typing the type U can replace T .

4. A calculus with name preorders

4.1. Preorders, positive and negative occurrences

We now refine the fusion calculi by replacing the equivalence relation on names generated through communication by a
preorder, yielding calculus πP (‘π with Preorder’). As the preorder on types given by subtyping enables promotions between
related types, so the preorder on names of πP enables promotions between related names. Precisely, if a is below a name
b in the preorder, then a prefix at a may be promoted to a prefix at b and then interact with another prefix at b. Thus an
input av.P may interact with an output bw.Q ; and, if also c is below b, then av.P may as well interact with an output
cz.R .

The ordering on names is introduced by means of the arc construct, a/b, that declares the source b to be below the
target a. The remaining operators are as for fusion calculi (i.e., those of the π -calculus with bound input replaced by free
input). Restriction is the only binder.

P ::= 0 | P | P | ab.P | ab.P | (νa)P | a/b .

The semantics of the calculus is given by a reduction relation, which is based on structural congruence:

Definition 6 (Structural congruence). Structural congruence on πP, written ≡, is the smallest congruence satisfying associa-
tivity and commutativity of | and the following rules:

P | 0 ≡ P (νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ ((νa)P) | Q if a /∈ fn(Q) .

We explain the effect of reduction by means of contexts, rather than separate rules for each operator. Contexts provide
a more succinct presentation, and a simpler comparison with an alternative semantics (Section 5). An active context is a
context in which the hole may reduce. Thus the only difference between active contexts and ordinary contexts is that in
active contexts, the hole may not occur underneath a prefix. We use C to range over (ordinary) contexts, and E for active
contexts.

We now define the reduction relation (the subscript in −→ea, for “eager”, will distinguish this from the alternative
semantics discussed in Section 5.1):

Definition 7 (Eager reduction). Eager reduction, written −→ea, is defined by the following rules:

R-SCon : P ≡ E[Q] Q −→ea Q ′ E[Q ′] ≡ P ′

P −→ea P ′ R-SubOut : a/b | bc.Q −→ea a/b | ac.Q

R-Inter : ab.P | ac.Q −→ea P | Q | b/c R-SubInp : a/b | bc.Q −→ea a/b | ac.Q

We write =⇒ea for the reflexive and transitive closure of −→ea.

Rule R-Inter shows that communication generates an arc. Rules R-SubOut and R-SubInp show that arcs only act on the
subject of prefixes; moreover, they only act on unguarded prefixes (i.e., prefixes that are not underneath another prefix).
The rules also show that arcs are persistent processes. Acting only on prefix subjects, arcs can be thought of as particles
that “redirect prefixes”: an arc a/b redirects a prefix at b towards a higher name a. These design choices lead to natural
commitments in the eager version, and are amenable to a more efficient implementation — a similar approach is chosen to
implement efficiently the fusion calculi using the Fusion Machine [10].

Arcs remind us of special π -calculus processes, called forwarders or wires [18], which under certain hypotheses allow
one to model substitutions; as for arcs, so the effect of forwarders is to replace the subject of prefixes. Note also that arcs
are different from explicit substitutions: only the latter are binding, and there can be several arcs acting on the same name.

We present below some examples of reduction. We sometimes omit the object part of prefixes, when it is not important,
writing e.g. e.P .

342 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
ac.ca.e.P | ad.de.a.Q
−→ea ca.e.P | de.a.Q | c/d
−→ea ca.e.P | ce.a.Q | c/d
−→ea e.P | a.Q | c/d | a/e
−→ea a.P | a.Q | c/d | a/e
−→ea P | Q | c/d | a/e

Reductions can produce multiple arcs that act on the same name. This may be used to represent certain forms of choice, as
in the following processes:

(νh,k) (bu.cu.u | bh.h.P | ck.k.Q)

=⇒ea (νh,k) (u | h/u | k/u | h.P | k.Q) .

Arcs h/u and k/u may act on u, and are therefore in competition with each other. The outcome of the competition determines
which process between P and Q is activated. For instance, reduction may continue as follows:

−→ea (νh,k) (k | h/u | k/u | h.P | k.Q)

−→ea (νh,k) (h/u | k/u | h.P | Q) .

The semantics above formalises an eager behaviour for arcs: arcs act on prefixes, substituting their subjects, regardless of
the possible consequences on future interactions. For instance, in the example above, the arc k/u could have acted on u even
in the absence of the matching prefix k.Q . Under the eager semantics the substitution produced by an arc is a commitment
— replacing a with b in a prefix commits that prefix to go along a channel that is at least as high as b in the preorder.
In Section 5.1, we formalise a by-need behaviour of arcs, in which substitutions are performed only when reduction takes
place. In by-need semantics, there is no separate action of commitment.

Definition 8 (Positive and negative occurrences). In an input ab.P and an arc a/b, the name b has a negative occurrence. All
other occurrences of names in input, output and arcs are positive occurrences.

An occurrence in a restriction (νa) is neither negative nor positive, intuitively because restriction acts only as a binder,
and does not stand for an usage of the name (in particular, it does not take part in a substitution).

Negative occurrences are particularly important, as by properly tuning them, different usages of names may be obtained.
For instance, a name with zero negative occurrence is a constant (i.e., it is a channel, and may not be substituted); and a
name that has a single negative occurrence is like a π -calculus name bound by an input (we investigate this situation in
Section 7.1). Names having two or more negative occurrences are specific to πP.

The number of negative occurrences of a name is invariant under reduction. Note also that the set of positive occurrences
is non-increasing.

Lemma 9. If P −→ea P ′ then for each b, the number of negative occurrences of b in P and P ′ is the same.

4.2. Types

We now show that the I/O capability type system and its subtyping can be transplanted from π to πP.
In the typing rules for I/O-types in the (monadic) π -calculus [31], two additional types are introduced: o T , the type of

a name that can be used only in output and that carries values of type T ; and i T , the type of a name that can be used
only in input and that carries values of type T . The subtyping rules stipulate that i is covariant, o is contravariant, and � is
invariant. Subtyping is brought up into the typing rules through the subsumption rule. The most important typing rules are
those for input and output prefixes; for input we have (in [31]):

T-InpBound : � � a : i T �,b : T � P

� � a(b).P
.

The π -calculus supports narrowing, and this is essential in the proof of subject reduction.
The type system for πP is presented in Table 1. It relies on the subtyping relation, written T1 ≤ T2, which is used to

define the typing judgement for names, written � � a : T . The typing judgement for processes, written � � P , states that
process P is well-typed according to the typing hypotheses expressed in �. In the two typing judgements, � ranges over a
finite map from names to types; we write �(a) for the type associated to a in �. With respect to the π -calculus, only the
rule for input needs an adjustment, as πP uses free, rather than bound, input. The idea in rule T-InpFree of πP is however
the same as in rule T-InpBound of π : we look up the type of the object of the prefix, say T , and we require i T as the
type for the subject of the prefix. To understand the typing of an arc a/b, recall that such an arc allows one to replace b
with a. Rule T-Arc essentially ensures that a has at least as many capabilities as b, in line with the intuition for subtyping
in capability type systems.

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 343
Table 1
The type system of πP.

Types (1 is the unit type): T ::= i T | o T | � T | 1

Subtyping rules:

� T ≤ i T � T ≤ o T

S ≤ T

i S ≤ i T

S ≤ T

o T ≤ o S T ≤ T

S ≤ T T ≤ U

S ≤ U

Typing rules:

T-Name

�,a : T � a : T

Subsumption

� � a : S S ≤ T

� � a : T

T-Res

�,a : T � P

� � (νa)P

T-Par

� � P � � Q

� � P | Q

T-Nil

� � 0

T-Out

� � a : o T � � b : T � � P

� � ab.P

T-InpFree

� � a : i �(b) � � P

� � ab.P

T-Arc

� � a : �(b)

� � a/b

Common to all premises of T-InpBound, T-InpFree and T-Arc is the look up of the type of names that occur negatively
(the source of an arc and the object of an input prefix): the type that appears for b in the hypothesis is precisely the type
found in the conclusion (within the process or in �). In contrast, the types for positive occurrences may be different (e.g.,
because of subsumption, � � a : i T may hold even if �(a) �= i T).

Note moreover that we cannot type inputs like outputs: consider

T-InpFree2-Wrong : � � a : i T � � b : T

� � ab
.

Rule T-InpFree2-Wrong would accept, for instance, an input ab in an environment � where a : i i 1 and b : � 1. Using
subtyping and subsumption, we could then derive � � b : i 1. In contrast, rule T-InpFree, following the input rule of the
π -calculus, makes sure that the object of the input does not have too many capabilities with respect to what is expected
in the type of the subject of the input. Enforcing this constraint is necessary for subject reduction. As a counterexample,
consider � = a : � i 1, b : � 1, c : i 1, and assume we are using rule T-InpFree2-Wrong. We would have � � P , for P � ab |
ac | b. However, P −→ea c/b | b −→ea c/b | c, and the final derivative is not typable under � (as � only authorises inputs at c).

In πP, narrowing depends on the negative or positive occurrences of a name.

Theorem 10 (Polarised narrowing). Let T1 and T2 be two types such that T1 ≤ T2 .

1. If a occurs only positively in P , then �, a : T2 � P implies �, a : T1 � P .
2. If a occurs only negatively in P , then �, a : T1 � P implies �, a : T2 � P .
3. If a occurs both positively and negatively in P , then it is in general unsound to replace, in a typing � � P , the type of a in � with a

subtype or supertype.

Proof.

1. All premises involving a are of the form �(a) ≤ T for some T . Applying the transitivity rule for the subtyping relation
suffices to conclude.

2. When a appears only negatively, premises are of the form T ≤ �(a). Indeed, the premise � � a : �(b) (in rule T-Arc) is
equivalent to �(a) ≤ �(b) and the premise � � a : i �(b) (in rule T-InpFree) is equivalent to ∃T �(a) ≤ i T ∧ T ≤ �(b),
by covariance of i.

3. a : T , b : T , c : T � a/b | b/c when for example T = i � 1, but replacing the type of b alone with � � 1 or i i 1 is impossible,
even if � � 1 ≤ i � 1 and i � 1 ≤ i i 1. �

Theorem 10 (specialised to prefixes) does not contradict Theorem 4, because in πP, reduction does not satisfy relation (2)
presented in Section 2, as the resulting process would not be (P | Q | R){b/c}, but rather (νc)(P | Q | R | b/c). In the latter
term, names b and c are related by an arc instead of being equated in the whole process, as it is the case after a substitution.

Remark 11. Theorem 10 may be seen as a refinement of the standard narrowing result for name-passing calculi. In the
π -calculus, for instance, a free name only has positive occurrences. Hence the usual statement of narrowing corresponds
to Theorem 10(1). In an input a(b).P , the binder for b represents a negative occurrence, so that if b is free in P then b
has both positive and negative occurrences, which means that the type of b may not be modified, as by Theorem 10(3). In
contrast, Theorem 10(2) is vacuous in π , as a name b with only negative occurrences is found in an input a(b).P where b
is not free in P .

In general, in a name-passing calculus, if a name has only positive occurrences, then its type (be it declared in the
typing environment, or in the binding occurrence of that name within the process) may be replaced with a subtype, and

344 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
conversely for names with only negative occurrences. The type of names with both positive and negative occurrences may
not be changed.

Our system enjoys subject reduction:

Theorem 12 (Subject reduction). If � � P and P −→ea P ′ then also � � P ′ .

The proof of Theorem 12 is straightforward, given Theorem 10 (1) combined with the variance properties of i and o.
The theorem also holds for the by-need version of reduction (Section 5.1).

Remark 13. The subject reduction theorem for πP remains valid if an arc a/b is allowed to act not only on the subject
of prefixes, but, more generally, on all positive occurrences of b (for instance occurrences of b as the object of an output
prefix). Also, subject reduction does not require that the substitutions generated by an arc are performed one at a time:
several substitutions could be performed simultaneously, like in Fusions.

The subject reduction theorem would however break in general if arcs acted also on negative occurrences of b, as the
arc would then behave as a fusion. In Section 7, we show that additional constraints allow for a refined version of subject
reduction in this case.

5. Behaviours

In this section, we analyse the behavioural theory of πP. We first motivate and define an alternative reduction relation.
We then study the properties of the induced notion of barbed congruence.

5.1. An alternative semantics: by-need reduction

The operational semantics given to πP in Section 4 is close to a simple rewriting-based implementation, by allowing
arcs to act locally, at any time. The effect of an arc is irreversible: the application of an arc a/b to a prefix at b commits
that prefix to interact along a name that is greater than, or equal to, a in the preorder among names. A commitment may
disable certain interactions, even block a prefix for ever. Consider, e.g.,

(νa, c)(bv.P | cw.Q | a/b | c/b) . (6)

There is a competition between the two arcs; if the first wins, the process is deadlocked:

−→ea (νa, c) (av.P | cw.Q | a/b | c/b)

since a and c are unrelated in the preorder.
We consider here an alternative semantics, in which the action of arcs is not a commitment: arcs come about only when

interaction occurs. For this reason we call the new semantics by-need (arcs act only when ‘needed’), whereas we call eager
the semantics of Section 4.1 (arcs act regardless of matching prefixes). In this semantics, as in the π -calculus, an interaction
involves both a synchronisation and a substitution; however unlike in the π -calculus where the substitution is propagated
to the whole term, here substitution only replaces the subject of the interacting prefixes.

Relations on names: preorder, joinability. The formalisation of the new semantics makes use of a preorder on names induced by
arcs. An arc is active if it is unguarded, i.e., it is not underneath a prefix. The preorder induced by P is the least preorder ≤
that includes b ≤ a for each active arc a/b in P , similarly for the preorder induced by a context C .

We write P �a �b (this judgement is defined formally below) if {a, b} has an upper bound in the preorder induced by P ,
that is, there is a name that is above both a and b; in this case we also say that a and b are joinable. Similarly we write
E � a � b for active contexts. For instance, we have (νu)(u/a | u/b | Q) � a � b, and (νv)(vt | (νw)(w/v | a/w | [·])) � a � v .

Given an active context E , the set of captured names of E , cn(E), is defined as follows: c ∈ cn(E) iff the hole occurs in
the scope of a restriction on c in E (cn(E) is included in the set of names that are bound in E , but might be distinct from
it):

cn([·]) = ∅ cn(P | E) = cn(E | P) = cn(E) cn((νa)E) = {a} ∪ cn(E)

Definition 14 (Reachability/joinability of names). We let conditions ϕ range over a � b, read “b is reachable from a”, and a �b,
read “a and b are joinable”. In both cases, we have n(ϕ) = {a, b}.

We first define a judgement � � ϕ , meaning that the set of conditions � implies condition ϕ , as follows:

� � a ≤ a

ϕ ∈ �

� � ϕ

� � b � a

� � a � b

� � a ≤ b

� � b ≤ c
� � a ≤ c

� � a ≤ b

� � c ≤ b
� � a � c

� � a ≤ b

� � b � c
� � a � c

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 345
We then define a judgement P � � on processes, meaning that P entails ϕ for all ϕ ∈ �:

a/b � b ≤ a

P � � � � ϕ

P � ϕ

P � ϕ

P | Q � ϕ

P � ϕ a /∈ n(ϕ)

(νa)P � ϕ
,

and a similar judgement E � � on active contexts, meaning that E entails all ϕ ∈ � at the occurrence of the hole in E:

E � � � � ϕ

E � ϕ

E � ϕ

P | E � ϕ

P � ϕ n(ϕ) ∩ cn(E) = ∅
P | E � ϕ

E � ϕ

(νa)E � ϕ

(we have omitted symmetrical rules for Q | P and E | P).

One can check that the relation induced by the judgement P � a � b is a preorder on names.

Example 15 (Mediators). A process M f g = (νc)(c/f | c/g) acts like a mediator: it joins names f and g (we have M f g � f � g).
Mediators remind us of equators in the π -calculus [18], or of fusions in the explicit fusion calculus, but lack the transitivity
property (e.g., M f g | Mgh � f � h does not hold).

Definition 16 (By-need reduction). By-need reduction, P −→bn P ′ , is defined by the following rules:

BN-SCon : P ≡ Q Q −→bn Q ′ Q ′ ≡ P ′

P −→bn P ′ BN-Red : E � a � b

E[ac.P | bd.Q] −→bn E[P | d/c | Q]
Relation =⇒bn is the reflexive transitive closure of −→bn.

While the eager semantics has simpler rules, the by-need semantics avoids ‘too early commitments’ on prefixes. For
instance, the only immediate reduction of the process in (6) is

−→bn (νa, c) (P | w/v | Q | a/b | c/b)

where prefixes bv.P and cw.Q interact because their subjects are joinable in the preorder generated by the two arcs.

Lemma 17 (Eager and by-need). P −→bn P ′ (by-need semantics) implies P =⇒ea P ′ (eager semantics).

Proof. Suppose the transition involves processes ac.P and bd.Q , thanks to a derivation of E � a � b. The latter means that
u is an upper bound of {a, b}, via some active arcs in E . Then, according to the eager semantics, we are able to rewrite the
prefixed processes into uc.P and ud.Q . �
Corollary 18 (Subject reduction, by-need semantics). Theorem 12 holds for the by-need semantics.

We now move to a comparison of the two semantics.

Behavioural equivalence. We contrast barbed congruence in πP under the two semantics we have given, eager and by-need.
In order to define both versions of barbed congruence, we need to define barbs. This requires some care, as in πP the
interaction of a process with its environment may be mediated by arcs. To have a uniform definition of barbs under the
eager and by-need semantics, we follow the definition of success in testing equivalence [6], using a special signal ω that
may not appear in processes.

Definition 19. Given process P and name a, we write P ↓ea
a (resp. P ↓bn

a) if there is a prefix α with subject a such that
P | α.ω −→ea P ′ (resp. P | α.ω −→bn P ′) where ω is not free in P and ω is unguarded in P ′ .

Hence P ↓a if the offer of the environment of an action at a may be accepted by P . Remark that P ↓bn
a holds if P =

E[α.Q] for some active context E that does not capture a, and some prefix α.Q , in which the subject b of α satisfies
E � a � b. With the same notations, P ↓ea

a if b = a.
Weak barbs and barbed congruence are then defined in the standard way, as outlined in Section 2. We write
ea and

�ea (resp.
bn and �bn) for the strong and weak versions of eager (resp. by-need) barbed congruence (Definition 1).

Example 20 (Contrasting eager and by-need semantics). The eager and by-need semantics of πP yield incomparable equiva-
lences. The two following laws are valid in the by-need case, and fail in the eager case:

(νa)a/c = 0 a | a = a.a .

346 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
To see the failure of the first law in the eager semantics, consider a context C � [·] | (νb)(b/c) | c | c.w; then C[(νa)(a/c)] can
lose the possibility of emitting at w , by reducing in two steps to (νa)(a/c | a) | (νb)(b/c | b.w), because of a commitment
determined by arcs; this cannot happen for C[0]. In the by-need semantics, there are no early commitments, and the two
processes are hence equal.

Similarly, in the eager semantics, it is possible to put a | a in a context where two arcs rewrite each a prefix differently,
while one can only rewrite the topmost prefix in a.a. This scenario cannot be played in the by-need semantics.

On the other hand, the following law is valid for strong (and weak) eager equivalence, but fails to hold in the by-need
case:

(νa,b, u)(a/u | b/u | u | a.w) = (νv)(v | v.τ .w | v.0) .

(τ .w stands for (νc)(c | c.w) with c �= w). The intuition is that concurrent arcs are used on the left-hand side to implement
internal choice. As a consequence of the law (νa)a/c = 0, in the by-need case, process b/u can be disregarded on the left, so
that the process on the left necessarily does the output on w .

Example 20 shows that the two semantics are incomparable. Lemma 17 suggests that the eager reduction is a decom-
position of the by-need reduction. We can moreover remark that the addition of dynamic operators like guarded choice is
rather natural under the by-need semantics. It is delicate in the eager semantics; for instance it would be unclear whether,
in a process like c/a | (a.P + b.Q), the arc should be allowed to trigger the choice.

We have introduced πP with the eager semantics because it is simpler, and closer to an implementation, but we find
the by-need semantics more compelling. Below, unless otherwise stated, we work under by-need, though we also indicate
what we know under eager.

5.2. Context-free characterisations of barbed congruence

When it comes to proving behavioural equalities, the definition of barbed congruence is troublesome, as it involves a
heavy quantification on contexts. One therefore looks for context-free coinductive characterisations, as labelled bisimilarities
that take into account not only reductions within a process, but also the potential interactions between the process and its
environment (e.g., input and output actions). We present such a characterisation for the by-need equivalence.

5.2.1. An LTS for by-need semantics

Labelled transitions. As actions for the by-need labelled bisimilarity, we use, besides τ -actions, only free input and free
output. Thus the grammar for actions is:

μ ::= τ | ab | ab .

Labelled transitions are written P
μ−→bn P ′ . Input and output transitions are given by the following rules:

BN-Inp : E � a � b {b,d} ∩ cn(E) = ∅
E[ac.P] bd−→bn E[d/c | P]

BN-Out : E � a � b {b,d} ∩ cn(E) = ∅
E[ac.P] bd−→bn E[c/d | P]

The purpose of the two rules is to define the input and output transitions, keeping labels as simple as possible. The two
rules are not supposed to be composed together to derive τ -actions. Internal transitions have already been defined, in the
reduction semantics: we take relation τ−→bn to coincide with the reduction relation −→bn.

A compositional semantics, which does not refer to structural congruence and the reduction relation, is presented in
separate work [15], together with an axiomatisation of behavioural equivalence in πP.

To understand rules BN-Inp and BN-Out, suppose the environment is offering an action at b. Since a and b are joinable,
there is a name, say e, that is above both a and b in the preorder; hence the prefix at a in the process and the prefix at
b in the environment can be transformed into prefixes at e, and can interact. The need for the preorder explains why we
found it convenient to express actions via active contexts.

In the action, the use of a fresh object d allows us to ignore name extrusion and allows us to work with a simpler set of
transitions labels.

We show an example transition derived using BN-Out: we have, for a fresh d (similar observations can be made for
BN-Inp):

(νu)
(

u/b | (νa, c)(u/a | ac.P)
)

bd−→bn (νu)
(

u/b | (νa, c)(u/a | c/d | P)
)

.

Here the process can interact with the environment at b (and hence perform a transition where b is the subject), because a
and b are joinable. Name c is not extruded; instead the arc c/d redirects interactions on d to c.

Another way to understand visible transitions is given by the following implications (which follow by a simple case
analysis on the rules used to derive the transitions):

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 347
Lemma 21. We have, for any name d,

• if P bd−→bn P ′ then (P | bd) −→bn P ′;
• if P bd−→bn P ′ then (P | bd) −→bn P ′ .

Behavioural equivalence. In πP, bisimulation requires, besides the usual condition on transitions, invariance under the addi-
tion of arcs (clause 1 below). Moreover, we require two bisimilar processes to entail the same joinability conditions between
names (clause 2).

Definition 22 (By-need bisimulation). A by-need bisimulation R is a set of pairs (P , Q) s.t. P R Q implies:

1. (P | a/b) R (Q | a/b), for all names a, b (invariance under arcs);
2. P � a � b implies Q � a � b, for all names a, b;

3. if P
μ−→bn P ′ , then Q

μ−→bn Q ′ and P ′ R Q ′ (where the object part of μ is fresh);
4. the converse of clauses (2) and (3).

(Strong) bisimilarity, written ∼bn, is the largest by-need bisimulation.

We shall sometimes use ∼bn-bisimulation as a synonym for by-need bisimulation below.
In clause 3, for actions, no extrusion or binding on names is involved. Further, the objects of the actions are fresh names.

In this sense, the bisimulation reminds us of the ground bisimulation in the π -calculus [33], in which a single instantiation
of each bound name is considered (in contrast with the ordinary bisimulation of the π -calculus, where names bound in an
input must be instantiated with all names free in the tested processes plus a new fresh name). In the π -calculus, however,
ground bisimulation coincides with barbed congruence only in asynchronous variants of the calculus. In contrast, πP is
synchronous.

Behavioural laws. We now present some examples and ∼bn (in)equalities that are established using the coinductive proof
method of bisimulation. The fact that we can actually rely on this method to derive
bn laws is justified below (Sec-
tion 5.2.2). All equalities and inequalities also hold under the eager semantics, though for some equalities this is true only
in the weak case (e.g., Lemma 26).

Any input and output of πP can be transformed into a bound prefix, by introducing a new restricted name:

Lemma 23 (From free to bound prefixes). We have, for fresh x′ and y′ , ax.P ∼bn (νx′)ax′.(x′/x | P) and b y.Q ∼bn (ν y′)b y′.(y/y′ | Q).

Note the presence of x′/x in the former equivalence, and of y/y′ in the latter, which in particular preserves polarities. If
these laws are applied to all inputs and outputs of a process P , then the result is a behaviourally equivalent process P ′ ,
in which all names exchanged in an interaction are fresh. Thus P ′ reminds us of a variant of π that achieves symmetry
between input and output constructs, namely π I , the π -calculus with internal mobility [32].

Lemma 24. We have (νb, c)ac.ab.0 �∼bn (νc)ac.ac.0, and (νb, c)ac.ab.0 ∼bn (νc)ac.ac.0.

These laws show a difference between input and output in behavioural equalities. The reason for the inequality is that
the first process can produce two transitions with objects e, f yielding P � νc (c/f | c/e), and then P � e � f .

In fusion calculi, processes (νb, c)ac.ab.0 and (νc)ac.ac.0 are not bisimilar (like in πP), but the duality in Fusions implies
that (νb, c)ac.ab.0 and (νc)ac.ac.0 are also not bisimilar (unlike in πP).

We now move to behavioural properties of arcs in πP.

Lemma 25 (
bn laws about arcs). When a �= b and b �= c, (νb)(a/b | b/c)
bn a/c and a/b | a/b
bn a/b.

The following laws involve arcs in relation with negative or positive occurrences of names. These are reminiscent of
standard results about substitutions, forwarders and equators in the asynchronous π -calculus (see, e.g., [33]).

Lemma 26 (Substitution and polarities).

1. If name a has only positive occurrences in P , then (νa)(P | b/a) ∼bn P {b/a};
2. if name a has only negative occurrences in P , then (νa)(P | a/b) ∼bn P {b/a};
3. (νa)(P | b/a | a/b) ∼bn P {b/a}.

348 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
5.2.2. Congruence
For the comparison between labelled bisimilarity (∼bn) and barbed congruence (
bn), the most delicate part is the proof

of congruence for bisimilarity. This is due: (i) to the shape of visible transitions, where an arc is introduced and the object
part in the label is always a fresh name, and (ii) to the use of ≡ in the definition of transitions.

To prove congruence under restriction and parallel composition, we rely on a standard up-to technique for bisimula-
tion, ‘bisimulation up to bisimilarity’, obtained by replacing any mention of R with ∼bnR∼bn in clauses (1) and (3) of
Definition 22:

Definition 27 (By-need bisimulation up to ∼bn). A relation R is a by-need bisimulation up to ∼bn if P R Q implies:

1. (P | a/b) ∼bnR∼bn (Q | a/b), for all a, b;
2. P � a � b implies Q � a � b, for all a, b;

3. if P
μ−→bn P ′ , then Q

μ−→bn Q ′ and P ′ ∼bnR∼bn Q ′ (where the object part of μ is fresh);
4. the converse of clauses (2) and (3).

Lemma 28. If R is a by-need bisimulation up to ∼bn then R ⊆ ∼bn .

The proof is standard (we show that ∼bnR∼bn is a bisimulation, using the fact that ∼bn itself is one, and is transitive).

Lemma 29. If P ≡ Q and P � a � b then Q � a � b.

The proof is an induction on the derivation of P ≡ Q .

Lemma 30. If P
bn Q and P � a � b, then Q � a � b.

Proof. Given a and b, we introduce the context E = (− | a. f | b.g), where f and g are fresh. We observe that R � a � b iff
E[R] −→bn R1 for some R1 such that R1 ↓bn

f and R1 ↓bn
g . By definition of
bn we know that E[P]
bn E[Q], which implies

the expected result. �
Lemma 31. If R is invariant under arcs and preserves �, then, whenever P R Q , we have P � a � b iff Q � a � b.

Proof. Let P and Q be processes and f be a fresh name. Then P � a � b iff (P | f/b) � a � f , and similarly for Q . Thanks to
the first hypothesis on R we have (P | f/b) R (Q | f/b) and we conclude with the second hypothesis. �

By definition of by-need bisimulation (Definition 22), Lemma 31 holds in particular if R is a by-need bisimulation.

Lemma 32. If P ≡ Q then P ∼bn Q .

Proof. We show that ≡ is a by-need bisimulation. The clauses 1), 2), 4) are dealt with using respectively the fact that ≡ is
a congruence, Lemma 29, and symmetry of ≡.

For clause 3), we first observe that when μ = τ , we can conclude easily, since τ−→bn = −→bn is stable by ≡ (i.e.,
≡−→bn≡ is included in −→bn). For the remaining labels, we examine the case where μ = bd, the other case being similar.
We know that P = E[ac.P1] with E �a �b and P ′ = E[d/c | P1]. And since E[ac.P1] ≡ Q , we know that Q = E ′[ac.P ′

1] which

entails Q
bd−→ E ′[d/c | P ′

1] ≡ P ′ . �
We say that R is a by-need bisimulation up to ≡ if it satisfies Definition 22 with ≡R≡ instead of R in clauses (1) and (3).

Of course, using Lemmas 28 and 32, if R is a by-need bisimulation up to ≡ then R ⊆ ∼bn.

Lemma 33 (Congruence for restriction). If P ∼bn Q then for all c, (νc)P ∼bn (νc)Q .

Proof. We show that R = {((νc)P , (νc)Q), P ∼bn Q } is a bisimulation up to ≡. Invariance under arcs is handled by rea-
soning up to ≡. Clause (2) about preservation of joinability is immediate because derivability (νx)P � ϕ only depends on
whether P � ϕ is derivable.

Clause (3) is split into two cases:

• Silent transitions: a τ transition (νx)P −→bn P1 cannot involve the external binder: if (νx)P ≡ E[ac.R1 | bd.R2] and
P1 ≡ E[c/d | R1 | R2] then P1 can be written P1 ≡ (νx)P ′ where P −→bn P ′ (indeed E1 �a �b iff (νx)E1 �a �b). Then we
use the fact that P ∼bn Q to infer the same transition from Q −→bn Q ′ with P ′ ∼bn Q ′ and hence (νx)Q −→bn (νx)Q ′ ,
which gives P1 ≡ (νx)P ′ R (νx)Q ′ .

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 349
• Visible transitions: suppose (νx)P
bd−→bn P1, then P = E[ac.R] and P1 = (νx)E[d/c.R]. This gives P

bd−→bn P ′ and P1 =
(νx)P ′ for some P ′ , where E � a � b and (νx)E � a � b. Since we also know that (νx)E does not capture b, we can infer
the same transition bd from Q and conclude. �

The following behavioural law on arcs will be useful below.

Lemma 34 (Transitivity of arcs). For all active contexts E we have: E[a/c] ∼bn E[(νb)(a/b | b/c)].

Proof. Let R be the relation corresponding to the above law. We show that R is a ∼bn-bisimulation up to ≡. By definition,
R is stable by parallel composition of arcs, since E can be an arbitrary active context.

Concerning the condition about joinability of names, the left-to-right implication is rather clear. From right to left, we
must prove that we cannot get more from (νb)(a/b | b/c) than from a/c, which is ensured by the restriction (νb).

Now concerning the condition on transitions, we know from the condition about joinability that the preorders on names
induced by related processes coincide. After any visible transition, the contexts are changed but the resulting processes are
still related through R. After a silent transition, since the contexts may be changed using ≡ we use clause (3) up to ≡, the
resulting processes being related through ≡R≡. �

It remains to establish that ∼bn is preserved by parallel composition. For this we introduce communication contexts. These
are, intuitively, the composition of two active contexts, one hosting an input, the other an output. Intuitively, the input and
output processes inserted in the holes may produce a τ -action. Communication contexts, ranged over by G , have two holes,
each occurring exactly once.

G ::= P | G | G | P | νa G | E1 | E2 .

By convention the leftmost hole is the first one, the other is the second one. We write P = G[ac.Q][bd.R] if P is obtained
from G by filling the first hole with ac.Q , and the second hole with bd.R .

Communication contexts can be used to decompose a τ−→bn transition:

Lemma 35. Suppose P τ−→bn P ′ (that is, P −→bn P ′). Then one of the following statements holds:

• either P = G[ab.Q][cd.R] and P ′∼bnν f (G[b/f | Q][f/d | R]),
• or P = G[cd.R][ab.Q] and P ′∼bnν f (G[f/d | R][b/f | Q]),

where G � a � c and f is fresh.

Proof. The two cases are similar, the main technical difficulty is to keep track of the usages of structural congruence. If
P −→bn P ′ , it means that P ≡ E[ab.Q 1 | ac.R1] and P ′ ≡ E[b/c | Q 1 | R1]. From the first relation we can get G such that
P = G[ab.Q][cd.R] (with G � a � c, Q ≡ Q 1 and R ≡ R1 — we leave out the symmetric case for which the output is the
second argument of G).

Using the laws of structural congruence for restriction, we pull upwards restrictions that occur unguarded (i.e., not under
a prefix), and write G ≡ (νb̂, ̂d)G ′ , where b̂ = ∅ if b is not bound and b̂ = {b} if b is captured by G .

We then reason as follows, relying on Lemma 34 and using structural congruence:

P ≡ (νb̂, d̂)G ′[ab.Q][cd.R]
−→bn (νb̂, d̂)(b/d | G ′[Q][R])

∼bn (νb̂, d̂)((ν f)(b/f | f/d) | G ′[Q][R])
≡ (ν f)(νb̂, d̂)(G ′[b/f | Q][f/d | R])
≡ (ν f)G[b/f | Q][f/d | R] .

Lemma 32 allows us deduce the expected result. �
The proof of congruence for parallel composition uses the following property, which allows us to decompose the arc

which is introduced along an interaction (rule E-Red) into two arcs, associated to the two visible prefixes taking part in the
interaction. This corresponds to the fact that in rules BN-Inp and BN-Out, transitions introduce an arc.

Lemma 36. Suppose Q
bf−→bn Q ′ . Then for any context E, for any name b that is not captured by E, and for any fresh name f , we

have Q | E[bd.R1] τ−→bn∼bn ν f (Q ′ | E[d/f | R1]).

350 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
We are ready to present the proof of congruence under parallel composition. For this, we rely on bisimulations up to
∼bn and restriction. We let Sν stand for the smallest relation such that (ν x̃)P Sν (ν x̃)Q whenever P S Q . In a bisimulation
up to ∼bn and restriction, ∼bnRν∼bn replaces R in clauses (1) and (3) of Definition 22. In particular, clause (3) becomes
(whenever μ �= τ , we suppose that the object part of μ is fresh):

(3) if P
μ−→bn P ′ , then Q

μ−→bn Q ′ for some P ′′ , Q ′′ , ̃x s.t. P ′ ∼bn ν̃x P ′′ , Q ′ ∼bn ν̃x Q ′′ , and P ′′ R Q ′′ .

Lemma 37. If R is a by-need bisimulation up to ∼bn and restriction then R ⊆ ∼bn .

The proof is standard (we use Lemma 32 and ∼bn
ν ⊆ ∼bn, i.e., Lemma 33, to show that ∼bnRν∼bn is a by-need bisimu-

lation).

Proposition 38 (Congruence for parallel composition). If P ∼bn Q then P | R ∼bn Q | R.

Proof (Sketch). We first establish the property using an additional hypothesis (“Special case”), and then move to the general
case.

• Special case: we first suppose that all arcs in R occur under at least one prefix. We show that

{(P | R, Q | R), P ∼bn Q and R does not contain active arcs}
is a bisimulation up to restriction and up to bisimilarity.

Suppose then P | R τ−→bn U , and suppose both P and R contribute to the transition (the other possibilities are easier).
We also suppose that P makes the input (the case of output is symmetric). We have, using Lemma 35:

P = E[ac.P1] R = F [bd.R1]
where E � a � b (since no arc is active in R), and, for some fresh f , P ′ = E[f/c | P1] and R ′ = F [d/f | R1]:

U ∼bn (ν f) (P ′ | R ′) .

Using rule EN-inp, we also have P
bf−→bn P ′ . Hence, since P ∼bn Q , Q

bf−→bn Q ′ and P ′ ∼bn Q ′ for some Q ′ , which
gives Q ′ = E ′[a′c′.Q 1] for some a′ s.t. E ′ � a′ � b, and Q ′ = E ′[f/c′ | Q 1]. From this, Lemma 36 gives us directly:

Q | R
τ−→bn∼bn (ν f) (Q ′ | R ′) .

We write R ′ as follows:

R ′ ≡ (νñ)
(

R ′′ | σ)
,

where σ is a parallel composition of arcs and R ′′ contains no active arc. We then have

P ′ | R ′ ≡ (νñ)
(

P ′ | σ | R ′′) ,

and similarly for Q ′ | R ′ . We can conclude by remarking that P ′ ∼bn Q ′ entails P ′ | σ ∼bn Q ′ | σ , and using up to
restriction to remove the topmost restrictions.

• General case: consider now the case where R is an arbitrary process. We reason by induction on R , to show that for all
P and Q , P ∼bn Q implies P | R ∼bn Q | R . The cases where R is a prefixed process or R = 0 are treated by the special
case above.
The case where R = u/v holds by definition of ∼bn: P ∼bn Q implies P | u/v ∼bn Q | u/v .
If R = R1 | R2, then by induction P | R1 ∼bn Q | R1, which gives, by induction again, (P | R1) | R2 ∼bn (Q | R1) | R2,
hence the result by associativity of |.
Suppose now R = (νc)R ′ . We can suppose w.l.o.g. c /∈ fn(P) ∪ fn(Q). Then by induction P | R ′ ∼bn Q | R ′ , which gives,
by Lemma 33, (νc)(P | R ′) ∼bn (νc)(Q | R ′). Lemma 32 gives (νc)(P | R ′) ∼bn P | (νc)R ′ , and similarly for Q , hence
P | R ∼bn Q | R . This concludes the proof. �

Theorem 39. Bisimilarity is a congruence.

Proof. Follows from Lemma 33 and Proposition 38, closure of ∼bn under prefixes being immediate. �
Theorem 40 (Soundness). If P ∼bn Q then P
bn Q .

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 351
Proof. We inspect the definition of
bn.

Preservation of barbs: in the case where the barb is fresh, i.e., f does not appear in any arc, P ↓bn
f is equivalent to P

α−→
where α is an input or output label with subject f . In the case of general barbs: P ↓bn

a is equivalent to (P | α. f) τ−→bn↓bn
f

for some α whose subject is a.

Closure under reduction holds trivially since −→bn coincides with τ−→bn. Finally, Theorem 39 guarantees closure by
contexts. �
5.2.3. Completeness of ∼bn

Completeness is proved along the lines of similar completeness proofs in the literature [27,33].
Given a prefix α, we write α for the dual prefix, i.e. ab = ab and ab = ab.

Lemma 41. Let P and P ′ be processes and f a name fresh w.r.t. P and such that P ′ �↓bn
f . We have that P α−→bn≡ P ′ if and only if there

exists a process P1 such that P1 ↓bn
f and

P | α.(f | f) −→bn P1 −→bn P ′ .

Proof. Let us consider the case where α is an input prefix bd, the output case being similar. We prove the two implications.

Left to right: since −→bn is stable by ≡ we directly suppose that P
α−→bn P ′ . Then P = E[ac.Q] with E � a � b and

P ′ = E[d/c | Q]. We reason as follows:

Pα � P | α.(f | f)

≡ E[ac.Q | bd.(f | f)]
−→bn E[d/c | Q | f | f]� P1

−→bn E[d/c | Q] = P ′ .

Right to left: since P1 ↓bn
f and f is fresh for P , we know that α has been triggered, that is, Pα ≡ E[ac.Q | bd.(f | f)]

with E � a � b and P ′ ≡ E[d/c | Q] since P ′ has no barb at f . This means that P is of the form P ≡ E[ac.Q]. Hence
P

α−→bn≡ P ′ . �
Theorem 42 (Completeness). If P
bn Q then P ∼bn Q .

Proof. We show that
bn is a ∼bn-bisimulation up to ≡. The clause for preservation of � is treated using Lemma 30. The
clause about parallel composition of arcs is trivial, as well as the symmetry and the clause for the τ-transition. We are left
with the clause involving input and output transitions.

Suppose P
α−→bn P ′ , and let f be a name fresh with respect to P , P ′ and Q . Lemma 41 yields P1 such that P1 ↓bn

f and
a sequence of reductions which we can transport to Q :

Q | α.(f | f) −→bn Q 1 −→bn Q 2 .

We know that P1
bn Q 1 and P ′
bn Q 2, hence Q 1 ↓bn
f and Q 2 �↓bn

f (since f is fresh for P ′). Another application of

Lemma 41 yields Q
α−→bn≡ Q 2, hence the result. �

Theorem 43 (Characterisation of barbed congruence). In πP, relations ∼bn and
bn coincide.

Proof. Consequence of Theorems 42 and 40. �
Hence all the laws stated above for ∼bn hold for
bn.

6. Expressiveness of πP

We compare πP with other calculi, both as examples of the use of the calculus and as a test for its expressiveness. We
study the (explicit) fusion calculus (Section 6.1) and two versions of the π -calculus (Section 6.2).

When useful, we work in a polyadic version of πP; the addition of polyadicity goes as for other name-passing calculi
in the literature. Polyadic πP can be encoded into the monadic calculus along the lines of the analogous encoding for the
π -calculus [33, Definition 3.1.4].

All results in this section use the by-need semantics; we do not know their status under the eager semantics.

352 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
6.1. Explicit Fusions

Bi-directional arcs, e.g., a/b | b/a, work as name fusions (cf., Lemma 26(3)). We thus can encode calculi based on name
fusions into πP. As an example, we consider the explicit fusion calculus [34]. Its syntax extends the fusion calculus with a
fusion construct a=b, yielding the following grammar:

P ::= 0 | P | P | ab.P | ab.P | (νa)P | a=b .

Since the construct of name fusion is symmetric, its effect can be conveniently expressed in terms of structural congru-
ence ≡, which is defined as in Definition 6, in addition to the following axioms:

a=a ≡ 0 (νa)a=b ≡ 0 a=b | P ≡ a=b | P {a/b} .

Note that laws about symmetry (a=b ≡ b=a), transitivity (a=b | b=c ≡ a=c | b=c), and ‘selective rewriting’ (a=b | P {a/x} ≡
a=b | P {b/x}) are admissible.

The reduction relation −→EF builds on ≡, and is defined as follows:

ab.P | ac.Q −→EF b=c | P | Q

P −→EF P ′

P | R −→EF P ′ | R

P −→EF P ′

(νa)P −→EF (νa)P ′
P ≡−→EF≡ P ′

P −→EF P ′ .

The encoding from Explicit Fusions to πP is defined as follows for prefixes and explicit fusions, the other constructs
being encoded homomorphically (names w and y are chosen fresh in the encodings of the output and, respectively, input
prefixes below):

[[a〈v〉.P]] = (νw)a〈v, w〉.w〈v〉.[[P]]
[[a〈x〉.Q]] = (ν y)a〈x, y〉.y〈x〉.[[Q]]

[[a=b]] = a/b | b/a

In Explicit Fusions, a reduction step introduces a name fusion, say a=b. In the πP encoding, this is mimicked in two steps,
so to be able to produce, correspondingly, two bidirectional arcs, a/b and b/a. The first step installs the first arc. The second
step is a communication on a private name, and has the effect of installing the reverse arc. We do not know whether this
encoding is fully abstract. We present an operational correspondence result, given by Theorem 49 below.

In order to derive Theorem 49, we present a series of technical results. We let P �a = b stand for P �a � b and P �b � a.
We write P =a,b Q iff P {b/a} = Q {b/a}, i.e., P and Q only differ in some occurrences of names a and b. We also write
(P) � {ϕ | P � ϕ}.

Lemma 44. If P =a,b Q , then (P | [[a=b]]) = (Q | [[a=b]]).

Proof. First, as a consequence of the definition of the judgement P � ϕ , we can remark that is monotonic (in the sense
that (P) ⊆ (P | Q)), and that there is a function f such that (P1 | P2) = f ((P1), (P2)) (where f is monotonic). Let
A � [[a=b]].

We prove the lemma by induction on P . The case where P does not contain any prefix is proved by establishing the
simple laws (a/c | A) = (b/c | A) and (c/a | A) = (c/b | A). For example the first inclusion can be obtained by remarking
that (a/c) = ((νb)(b/c | a/b)) ⊆ (b/c | a/b) (by Lemma 34, assuming a �= b and b �= c without loss of generality) and then
that (b/c | a/b | A) ⊆ (b/c | A | A) = (b/c | A) by monotonicity and idempotence (since (P | P) = (P) for all P).

Using idempotence and Lemma 29, we deduce that (P1 | P2 | A) = f ((P1 | A), (P2 | A)). This observation allows us
to treat all other cases of the induction. �

We extend the definition of =a,b to conditions: ϕ =a,b ψ iff ϕ{b/a} = ψ{b/a}. Lemma 44 can be slightly generalised:

Lemma 45. If P =a,b Q and ϕ =a,b ψ then P | [[a=b]] � ϕ iff Q | [[a=b]] �ψ .

Proof. By Lemma 44 we only have to prove that if R = S | [[a=b]] then R �ϕ implies R �ψ , which is easy, since for each case
there is a rule from Definition 14 whereby a/b (resp. b/a) is used to replace an occurrence of a with b (resp. vice versa). �
Lemma 46. If P =a,b Q then (P | [[a=b]]) ∼bn (Q | [[a=b]]).

Proof. Let R � {(P | [[a=b]], Q | [[a=b]]), with P =a,b Q }. We prove that R is a ∼bn-bisimulation, by symmetry of =a,b
there are three properties to check (cf. Definition 22):

1. invariance under arcs is immediate;
2. follows by Lemma 44;

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 353
3. we use Lemma 45 to ensure that the communication is possible (when μ = τ), or that the subject of μ can be related
to the subject of the prefix being triggered (when μ �= τ). The resulting processes are still related through =a,b since
this relation commutes with ≡ and contexts. �

Lemma 47. If P and Q are prefix-free and (P) = (Q) then P ∼bn Q .

Proof. The corresponding relation is a ∼bn-bisimulation: all condition checks are straightforward, even when we add arcs
since Definition 14 is compositional: (P | Q) only depends on (P) and (Q). �
Lemma 48. For every process P of Explicit Fusions, if either [[P]] � a � b or [[P]] � a � b, then [[P]] � a = b and P ≡ P | a=b (i.e. a and
b are related through the fusions in P).

Proof. First we prove that [[P]] � a � b implies [[P]]�b � a by induction on the derivation of the first judgement. The only
interesting case is when we use an arc b/a: by definition of the encoding, we know that the arc a/b is present as soon as b/a
is, which gives the expected property.

We then exploit this property in the case where [[P]] � a � b. We know that there is a name u such that a � u and b � u
and we use the first part of the proof to deduce u � a and u � b, which yields a � b and b � a. �
Theorem 49 (Explicit Fusions, operational correspondence). Let P , Q be processes of the explicit fusion calculus, and −→EF the
reduction relation in the calculus.

1. If P ≡ Q then [[P]]
bn [[Q]];
2. if P −→EF P ′ then [[P]] −→bn�bn [[P ′]];
3. conversely, if [[P]] −→bn Q , then Q �bn [[P ′]] for some P ′ such that P −→EF P ′ .

A similar result holds for the fusion calculus [29]. The present statement is simpler, because in Explicit Fusions the
triggering of a reduction step does not depend on the presence of a restriction.

Proof. 1) Thanks to Theorem 43, it is enough to prove [[P]] ∼bn [[Q]], which we do by induction on the derivation of P ≡ Q .
The standard base cases like associativity are treated easily, because the translation yields structurally congruent processes.

The other base cases are those dealing with fusion processes:

• law [[a=b | P]] ∼bn [[a=b | P {a/b}]] follows by Lemma 46,
• laws [[a=a]] ∼bn [[0]] and [[(νa)a=b]] ∼bn [[0]] follow by Lemma 47.

We conclude thanks to the fact that ∼bn is a congruence and an equivalence relation.
2) Thanks to 1) and the fact that relation −→bn is preserved by active contexts, we only have to consider the base case

of the reduction relation: R � ab.P | ac.Q −→EF b=c | P | Q � R ′ .
Moreover, since �bn is stable by ≡ and active contexts, we can restrict ourselves to considering the reduction

[[R]] −→bn (νw, y)(b/c | w/y | wb.[[P]] | y〈c〉.[[Q]]). The latter process can only make a deterministic reduction to process
[[R ′]] | (νw, y)(w/y), which is strongly bisimilar to [[R ′]] by Lemma 47.

3) The reduction [[P]] −→bn P1 comes from a communication between two prefixes [[a〈v〉.Q]] and [[b〈x〉.R]] where P
must be of the form P ≡ (ν c̃)(S | a〈v〉.Q | b〈x〉.R) and [[S]] � a � b. Lemma 48 gives S ≡ S | a=b to get finally P ≡ (ν c̃)(S |
a〈v〉.Q | a〈x〉.R) and P −→EF (ν c̃)(S | v=x | Q | R) � P ′ . We relate [[P ′]] to P1 through �bn by the same reasoning as
in 2. �
6.2. π -calculus

The embedding of the π -calculus into any fusion calculus is defined by translating the bound input construct as follows:

[[a(x).P]] = (νx)ax.[[P]]
(the other constructs being translated homomorphically). The same encoding can be used for πP.

The encoding of π -calculus into Fusions is not fully abstract for barbed congruence. For instance, in the π -calculus,
a freshly created channel is guaranteed to remain different from all other existing channels. Thus in a process νa (ba.(a.P |
c.Q)), the two prefixes a.P and c.Q may never interact with each other in the π -calculus. This property does not hold
after translation in the fusion calculus, since a recipient of the newly created name a can equate it with another name (e.g.,
with c, using the context bc.0 | [·]).

As is the case for the encoding of Fusions in Section 6.1, we do not know whether the encoding of the full π -calculus
into πP is fully abstract; we only present an operational correspondence result (Section 6.2.1). In Section 6.2.2, we establish
full abstraction for the encoding restricted to Aπ , the asynchronous subset of the π -calculus where no continuation is
allowed after the output prefix. For Aπ , full abstraction holds with respect to barbed congruence in the π -calculus.

354 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
6.2.1. Operational correspondence for synchronous processes
We use the following properties of the encoding, where −→π stands for reduction in the π -calculus. Barbs in the

π -calculus are defined in the standard way: P ↓a iff P ≡ (ν̃c)(α.P | R) where α is a prefix whose subject is a (this is
equivalent to P = E[α.P1] for some active context E).

Lemma 50 (Operational correspondence). Let P , Q be π -calculus processes.

1. P ≡ Q iff [[P]] ≡ [[Q]];
2. if P −→π P ′ then [[P]] −→bn
bn [[P ′]];
3. conversely, if [[P]] −→bn P1 then there is P ′ such that P −→π P ′ and P1
bn [[P ′]];
4. P ↓a iff [[P]] ↓a.

Proof.

1. The direction from left to right is straightforward. For the converse direction, suppose [[P]] ≡ R1, then there exists R
such that P ≡ R and we can obtain R1 from [[R]] only by moving restrictions on input objects. Hence if R1 = [[Q]], we
have necessarily R = Q .

2. By induction on P −→π P ′ .
Base case: if ab.P | a(x).Q −→π P | Q {b/x} we have [[ab.P | a(x).Q]] −→bn (νx)([[P]] | b/x | [[Q]])
bn [[P]] | [[Q]]{b/x} by
Lemma 26 since x has no negative occurrence in [[Q]].
Inductive case: E[P] −→π E[P ′] with P −→π P ′ and E is an active context. It is enough to observe that [[E]] is an
active context, since −→bn and
bn are both preserved by active contexts.
Inductive case: P ≡ P1 −→π P ′

1 ≡ P ′ with, by induction, [[P1]] −→bn
bn [[P ′
1]]. Using the property established above,

[[P]] ≡−→bn
bn≡ [[P ′]]. We conclude by remarking that (≡−→bn
bn≡) ⊆ (−→bn
bn), by definition of −→bn and
bn.
3. Suppose [[P]] −→bn P1. Since [[P]] does not contain any arc process, the reduction comes from a communication

between two prefixes on the same name a: [[P]] ≡ E1[ab.[[Q]] | ax.[[R]]] with E binding x, and then, keeping track
of all modifications brought by ≡, we know that P1 is of the form P1 ≡ E1[[[Q]] | b/x | [[R]]]. We can recover
P ≡ E[ab.Q | a(x).R] −→π E[Q | R{b/x}] � P ′ . Then [[P ′]] = [[E]][[[Q]] | [[R]]{b/x}] ≡ E1[[[Q]] | [[R]]{b/x}]
bn P1.
In the reasoning above, we rely on the following decomposition: if [[P]] ≡ E1[ab.Q 1 | ax.R1] then Q 1 ≡ [[Q]], R1 ≡ [[R]]
and P ≡ E[ab.Q | a(x).R] with [[E]][(νx)[·]] ≡ E1[·]. We prove this decomposition by combining techniques we have
used in the first item, to deduce that Q 1 and R1 are structurally congruent to the encodings of some processes, with
the fact that structural congruence acts independently on either sides of the prefixes ab and ax.

4. The implication from left to right is straightforward by induction. Remark in passing that to detect the input barb,
a synchronous “tester process” ab.ω is needed (note that the asynchronous version of behavioural equivalence does not
take input barbs into account). The other implication follows from the fact that there is no arc in [[P]] so [[P]] ↓a if and
only if [[P]] contains a prefix whose subject is a (which is equivalent to P satisfying the same property). �

One inclusion of the full abstraction result actually holds for the whole π -calculus:

Lemma 51. Let P and Q be π terms. Then [[P]]
bn [[Q]] implies P
π Q .

Proof. The relation {(P , Q) | [[P]]
bn [[Q]]} is reduction-closed (consequence of Lemma 50), barb-preserving (consequence
of Lemma 50), and context-closed: if C is a π context then there exists a πP context C1 such that [[C[P]]] = C1[[[P]]], and
similarly for Q . Hence [[P]]
bn [[Q]] implies [[C[P]]]
bn [[C[Q]]]. �
6.2.2. Full abstraction for asynchronous processes

We now establish full abstraction for the encoding of Aπ , the asynchronous π -calculus. We say that P ∈ πP is asyn-
chronous if the continuation of all outputs in P is 0. We can remark that the encoding of a process in Aπ is an asynchronous
πP process.

We first establish correspondence results for labelled transitions. Labelled transitions in the π -calculus are written
μ−→π

(in particular, μ = a(x) is a late input). The following lemma relates visible labels in π to visible labels in πP.

Lemma 52 (Label correspondences). Let P be any π process and f a fresh name.

1. If P ac−→π P ′ then [[P]] a f−→bn≡ c/f | [[P ′]].
2. If P

a(c)−−→π P ′ then [[P]] a f−→bn≡ (νc)(c/f | [[P ′]]).

3. If P
a(x)−−→π P ′ then [[P]] af−→bn≡ (νx)(f/x | [[P ′]]).

4. If [[P]] a f−→bn P1 then either P ac−→π P ′ with P1 ≡ c/f | [[P ′]], or P
a(c)−−→π P ′ with P1 ≡ (νc)(c/f | [[P ′]]).

5. If [[P]] af−→bn P1 then P
a(x)−−→π P ′ with P1 ≡ (νx).(f/x | [[P ′]]).

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 355
The asynchronous version of πP is defined as a syntactic restriction of πP, by forbidding continuations after output
prefixes, along the lines of Aπ .

Lemma 53 (Decomposition of transitions, asynchronous πP). We say that an arc a/b is visible in a process P if either a or b (or both)
occurs free in P .

Let P be an asynchronous πP term with no visible arc, σ a parallel composition of arcs, and f , g some fresh names.

1. If P | σ τ−→bn Pt then

• either P τ−→bn P1 with Pt ≡ P1 | σ ,

• or P
a f−→bn P1

bg−→bn P2 with Pt ∼bn (ν f , g)(P2 | f/g) | σ and σ � a � b.

2. Suppose P
a f−→bn P1

bg−→bn P2 and σ � a � b. Then P | σ τ−→bn∼bn (ν f , g)(P2 | f/g) | σ .

This result is the πP counterpart of a similar property in Aπ . In the proof, we use ∼bn for renaming and concatenating
arcs involving fresh names using Lemma 34.

Lemma 54. Let P and Q be Aπ processes. Then P
π Q implies [[P]]
bn [[Q]].

Proof. Thanks to Theorem 40 and to the characterisation of barbed congruence by ground bisimilarity in the asynchronous
π -calculus [33], we only have to prove that P ∼g Q implies [[P]] ∼bn [[Q]]. We do so by showing that the following relation
is a ∼bn-bisimulation up to restriction and ∼bn:

R� {([[P]] | σ , [[Q]] | σ) | P ∼g Q } ,

where σ stands for any parallel composition of arcs.
In order to establish this property, we remark that [[P]] is an arc-free process. We have to check the correspondences on

transitions between π and πP, using Lemmas 50, 52 and 53. We analyse all possible transitions from [[P]] | σ :

1. In the case of an input transition, we have [[P]] | σ af−→bn∼bn (νx)(f/x | [[P ′]] | σ) with P
b(x)−−→π P ′ for some b such that

σ � a � b. We deduce from P ∼g Q that [[Q]] bf−→bn∼bn (νx)(f/x | [[Q ′]]). We use σ to derive a transition along the
original label af to a process bisimilar to (νx)(f/x | [[Q ′]] | σ), and the resulting processes are related by ∼bnRν∼bn.

2. Similarly for an output transition [[P]] | σ a f−→bn∼bn (ν ĉ)(c/f | [[P ′]]), we have P
νĉbc−−−→π P ′ with ĉ ∈ {∅, {c}} and σ �a �b.

The reasoning is similar to the previous case.

3. The case of a τ transition [[P]] | σ τ−→bn Pt yields two cases by Lemma 53:

(a) either Pt ≡ P1 | σ and [[P]] τ−→bn P1. This is handled using Lemma 50;
(b) or, in two steps:

[[P]] a f−→bn
bg−→bn (ν ĉ, x)(c/f | g/x | [[P ′′]]) � P2

P
νĉac−−−→π

b(x)−−→π P ′′

such that σ � a � b and Pt ∼bn (ν f , g)(P2 | f/g).
We can again play the ground bisimilarity game, first with transition ν ĉ ac and then with transition b(x) to get

Q
νĉac−−−→π

b(x)−−→π Q ′′ with P ′′ ∼g Q ′′ . Using Lemma 52 we obtain two transitions along a f and bg from [[Q]], which
we compose with Lemma 53 to get [[Q]] | σ τ−→bn (ν f , g)((ν ĉ, x)(g/x | c/f | [[Q ′′]]) | f/g). Bisimilarity can be used to
finally get processes related through Rν (see the definition of Rν before Lemma 37):

(ν f , g, ĉ, x)([[P ′′]] | σ ′) Rν (ν f , g, ĉ, x)([[Q ′′]] | σ ′)
with σ ′ = σ | c/f | f/g | g/x.

Relation R is symmetric, and clearly satisfies the clause about joinability and the clause about the addition of arcs. Thus R
is a ∼bn-bisimulation up to restriction and ∼bn. �
Theorem 55 (Full abstraction for the asynchronous π -calculus). Suppose P , Q are Aπ processes. Then P
π Q iff [[P]]
bn [[Q]].

Proof. Follows from Lemmas 51 and 54. �
In the theorem,
π is barbed congruence in the full π -calculus, as opposed to asynchronous barbed congruence, where

output barbs are observable but input barbs are not. We conjecture that in a π -calculus with neither replication nor choice,

356 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
asynchronous and synchronous barbed congruences coincide, and hence the theorem holds also under asynchronous barbed
congruence.

Theorem 55 (and the results on types) shows that πP, although syntactically similar to Fusions, is closer to the
π -calculus in the management of names.

Discussion. As stated above, we do not know whether full abstraction holds for the encoding of the full π -calculus. More
precisely, if the source calculus features a replication or choice operator, full abstraction would break at least for ground,
early and late bisimilarities. The situation is less clear for open bisimilarity. It is also unknown whether fusion calculi can
be encoded in a fully abstract way. We leave these two questions for future work.

If they exist, translations in the opposite direction (from πP to π) would likely be more convoluted: under some condi-
tions, an arc a/b can be encoded as the π -calculus process !b(x).ax, called a forwarder from b to a. For this encoding to work,
two constraints on the source calculus are necessary: asynchrony (all outputs have 0 as continuation) and locality (a name
that is used in input subject in the process may not have negative occurrences; in the π -calculus, this may be rephrased
by saying that a name bound by an input may not occur as subject of an input). It might be possible to encode a version
of πP satisfying these two constraints into ALπ , the version of π that satisfies the same constraints. This encoding would
probably bear some resemblance with M. Merro’s encoding of the asynchronous monadic fusion calculus into Aπ [25].

7. Unique negative occurrences of names

In this section we consider a constrained version of the calculi discussed in the paper, where each name may have at
most one negative occurrence in a process. In the fusion calculus [29] the constraint means that each name appears at most
once as the object of an input. In πP, the constraint affects also arcs, as their source is a negative occurrence.

We call πP1 and Fu1 the constrained versions of πP and Fusions. (Note that in the case of a calculus with replications,
if a free name of P appears negatively in P , then !P does not qualify as a constrained process.)

It is also possible to adapt this constraint to Explicit Fusions. This requires, given a process P of Explicit Fusions, to
assign a “polarisation”, for each (occurrence of an) explicit fusion a=b occurring in P , whereby either a or b is considered
as negative | for prefixes, polarity is defined as above. Therefore, a process P belongs to the constrained Explicit Fusions
calculus if it is possible to assign a polarity to all names occurring in explicit fusions in such a way that every name occurs
at most once in negative position (either as an input object or in the negative side of an explicit fusion construct).

In order for this restriction to make sense, we need the constraint to be preserved by structural congruence. This is the
case for all structural congruence laws of Explicit Fusions, but one. In particular, the law P | a=b ≡ P {b/a} | a=b preserves
the constraint, even if moving from the left hand side to the right hand side might involve changing the polarisation of
the fusion a=b (in order to deem b as positive in a=b). The law that causes a problem is the reflexivity law a=a ≡ 0, as
including it would entail that structural congruence would not preserve the constraint (consider, for instance, ca | 0 ≡ ca |
a=a). We therefore do not include the reflexivity law in the definition of ≡. This has no effect on the induced equivalence,
because symmetry and transitivity are still derivable without it.

We call the resulting calculus Ef1. The constraint is rather draconian, bringing the calculi closer to the π -calculus, where
the constraint is enforced by having binding input. It may be remarked that when encoding the π -calculus in πP (see
Section 6.2), the image is included in πP1. Still, the constraint is more generous than tying the input to a binder as in π .
For instance, we have more complex forms of causality involving input, as in the process (νx)(ax.wt | bx), where the input
at a blocks the output at w , and can be triggered before or after the output at b takes place. Delayed inputs [25] are thus
simply encodable in πP1 as (νx) (ax | P), whereas in π they represent a non-trivial extension of the calculus.

In the remainder of this section, we show the consequences of imposing unique negative occurrences of names for
behavioural equivalence (Section 7.1) and types (Section 7.2).

7.1. Behavioural properties of constrained calculi

By Lemma 9, a πP1 process can only reduce to a πP1 process. This allows us to adapt (weak) behavioural equivalence
(�bn, Definition 1) to πP1, yielding �πP1bn, where in the last clause, we only allow contexts which, when applied to the
processes being compared, yield πP1 processes. Similarly, �ea, the eager equivalence, yields �πP1ea.

We show that the constraint makes certain differences between calculi or semantics disappear. First, in the eager seman-
tics for πP1, reduction steps where arcs are used to rewrite prefixes are deterministic.

Lemma 56 (Eager reduction in πP1). Consider P ∈ πP1, and write P −→rew P ′ whenever P −→ea P ′ where the reduction is a rewrite
step involving an arc. Then P −→rew P ′ implies P �πP1ea P ′ .

Proof. In πP1, every name has at most one father in the partial order (a is a father of b if a is above b and no other name
stands between a and b in the order), by definition of πP1, which has two important consequences. The first consequence
is that P and P ′ have the same barbs when P −→rew P ′ . The second is that −→rew satisfies the diamond property (that is,
that any two −→rew transitions sharing the same origin commute) in πP1.

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 357
This allows us to show that R = {(P , P ′). P −→rew P ′} ∪ {(P , P)} ⊆�πP1ea. The interesting cases arise from the reductions
of P . If P −→rew P1, then the diamond property allows us to conclude. If P −→ea P1 through a communication, then either
P ′ −→rew−→ea P1 (in the case where the communication involves the prefix that has been rewritten using −→rew), or P ′ −→ea
P ′

1 with P1 −→rew P ′
1. In both cases, we close the diagram. �

In addition to Lemma 56, we can also observe that in πP1, we have the law (νa)a/b �πP1ea 0, which follows from
Theorem 57 and Example 20.

In fact, since reduction steps involving rewritings in the eager semantics do not correspond to commitments, the two
versions of weak equivalence in πP1 coincide:

Theorem 57 (Coincidence of eager and by-need semantics in πP1). �πP1ea = �πP1bn .

Proof. We first prove two commutation properties, where we write, like above, P →rew P ′ when P →ea P ′ follows from a
rewriting step involving an arc, and P →com P ′ when P →ea P ′ follows from a communication step. We have the following:

1. (←rew→bn) ⊆ (→bn←=
rew) (which implies (⇐rew⇒bn) ⊆ (⇒bn⇐rew)). (Here we write R= for the extension of R with

the reflexive relation.) The interesting case is when →rew rewrites a name a to b, and a is involved in the communi-
cation taking place in the →bn step (which exploits a � c). In this case, the →bn step can simulate the rewriting step
(since b � c), because →rew makes no commitment.

2. (→rew→bn) ⊆ (→bn→=
rew) (which implies (⇒rew→bn) ⊆ (→bn⇒rew)). Using the same kind of reasoning, if →rew

rewrites a name a into b that is used afterwards in the communication step of →bn (using b � c), then →bn can
use the property a � c.

To establish �πP1bn ⊆ �πP1ea, we prove that R = (⇐rew�πP1bn⇒rew) satisfies the following stability property under eager
reductions: (←eaR) ⊆ (R⇐ea). Consider P , P1, Q 1, Q and P ′ such that P →ea P ′ and P ⇐rew P1 �πP1bn Q 1 ⇒rew Q . We
must show that we can find some Q ′ to close the diagram.

• The case P →rew P ′ is straightforward (we choose Q ′ = Q).
• Suppose then P →com P ′ , which implies P →bn P ′ . By property 2 above, we get P1 →bn P ′

1 and P ′
1 ⇒rew P ′ . This

allows us to play the �πP1bn game, and obtain P ′
1 �πP1bn Q ′

1 such that Q 1 ⇒bn Q ′
1, which, thanks to property 1, gives

Q ′
1 ⇒rew Q ′ with Q ⇒bn Q ′ (hence Q ⇒ea Q ′ by Lemma 17). The reasoning is depicted on the following diagram:

P

com bn

P1

bn

rew
�πP1bn Q 1

bn

rew Q

bn ea

P ′ P ′
1

rew �πP1bn Q ′
1 rew Q ′

To prove �πP1ea ⊆ �πP1bn we show that �πP1ea enjoys the following property of stability under by-need reductions:
(←bn�πP1ea) ⊆ (�πP1ea⇐bn). Suppose that P �πP1ea Q and P →bn P ′ which implies by Lemma 17 that P ⇒ea P ′ . This
allows us to draw the �πP1ea diagram, to get Q ⇒ea Q ′ such that P ′

�πP1ea Q ′ . Since →ea = (→com ∪ →rew) and →com ⊆
→bn , we deduce ⇒ea⊆ (→bn ∪ →rew)∗ and from property 2 above we have ⇒ea ⊆ ⇒bn⇒rew , i.e., Q ⇒bn Q ′′ ⇒rew Q ′ for
some Q ′′ . We are able to close the diagram with Q ′′ since ⇒rew ⊆ �πP1ea by Lemma 56. Finally, since a name has a
negative occurrence in Q ′ if and only if it has one in Q ′′ , we have that P ′

�πP1ea Q ′
�πP1ea Q ′′ implies P ′

�πP1ea Q ′′ .

P

bn

P

ea

�πP1ea Q

ea

Q

bn

P ′ P ′ �πP1ea Q ′ Q ′′
rew

�πP1ea

We thus proved that the reduction diagrams for �πP1ea and �πP1bn can be related. Properties involving context closure and
barbs are common in the eager and by-need cases, so that �πP1ea = �πP1bn. �

It also appears that the calculi πP1 and Fu1, defined by the constraint on unique negative occurrence of names, are
behaviourally close. For instance, in πP1 the directionality of arcs is irrelevant (that is, arcs behave like explicit fusions), as
shown by the following law (where we omit the subscripts ‘ea’ and ‘bn’ in the light of Theorem 57).

Lemma 58. a/b �πP1 b/a.

Proof. The relation relating C[π.E[a/b]{a/x}] with C[π.E[b/a]{b/x}] (for any context C , any active context E , and where x
can only appear in subject position in E) is reduction-closed and barb preserving. �

358 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
Note that due to the constraint, the processes in Lemma 58 must be compared in contexts where a and b only occur
positively.

We now prove that contextual equivalences in Ef1 and πP1 coincide. For this, when P ∈ πP1, we write P ∈ Ef1 for the
canonical projection in Ef1. We moreover refine the behavioural equivalences as follows: we write P �

N
πP1 Q iff P �πP1 Q

and all names which occur free in negative position in P and Q belong to the set of names N . Moreover, when closing by
contexts in checking �N

πP1, we impose that contexts cannot use names in N in negative position.
Relation ∼=N

Ef1 is defined along the same lines; for context closure, we impose that there exists a polarisation of each
fusion construct such that the constraints about N and about uniqueness of negative occurrence are satisfied.

Lemma 59. For all N, if all names occurring free in negative position in P and Q belong to N, we have P �
N
πP1 Q iff P ∼=N

Ef1 Q .

For example Lemma 58 equivalently states that a/b �
{a,b}
πP1 b/a.

Proof. We prove the two implications:

• {(P , Q) | P ∼=N
Ef1 Q } ⊆�

N
πP1 for all N:

– context closure: if C is a πP1 context without negative name in N , there exists a Ef1 context C such that C[R] = C[R]
and there is a trivial polarisation of C such that no negative name in C is in N . Then if we write NC for the names
occurring free in negative position in C , we have that C [P] ∼=N∪NC

Ef1 C[Q], which means C[P] and C[Q] are in the
relation;

– reduction closure follows from the following operational correspondence:
∗ if P →πP P ′ then P →E F P ′ (indeed if P � a � b then P � a = b)
∗ if P →E F P1 then for some P ′ , P →π P P ′ and P1 = P ′ (indeed if P � a = b then P � a � b since P ∈ πP1)

– the above two results allow us to deduce barb preservation.
• {(P1, Q 1) | P1

↔= P ∧ Q 1
↔= Q ∧ P �

N
πP1 Q } ⊆ ∼=N

Ef1 for all N , where ↔= is the smallest congruence on Ef1 terms satisfying
a=b ↔= b=a for all a, b:
– context closure: if there some Ef1 context C without negative name in N , then for some πP1 context D we know

that: for all R ∈ πP1 such that name negatively occurring in R is in N , D[R] ↔= C[R]. By context closure of �N
πP1, we

know that D[P] �N∪ND
πP1 D[Q] and hence (C[P1], C[Q 1]) is in the relation;

– reduction closure and barb preservation are handled in the same way as above (note that ↔= is a strong bisimula-
tion). �

7.2. Capabilities and subtypes in constrained fusions

Another difference that disappears under the constraint of unique negative occurrences of names is the one concerning
capabilities and subtyping in fusion calculi with respect to π and πP, exposed in Sections 3 and 4. Indeed, it is possible to
equip Fu1 with an I/O type system and subtyping. To achieve this, we can use exactly the rules of πP in Section 4.2 — with
the exception of T-Arc as Fu1 does not have arcs.

To understand how I/O types work in Fu1, let us analyse how the constraint on unique occurrences of negative names
evolves along reductions. We first consider the following reduction step in Fu1 (−→Fu1 stands for reduction in Fu1):

(νc)(ab.P | ac.Q | R) −→Fu1 (P | Q | R){b/c} . (7)

In this reduction, only positive occurrences of c are replaced with b, since the only negative occurrence of c is in ac in the
initial process. Hence, no negative occurrence of b is introduced.

The other kind of reduction in Fu1 is as follows (note that the restriction is now on b, and that the substitution intuitively
goes in the opposite direction w.r.t. πP):

(νb)(ab.P | ac.Q | R) −→Fu1 (P | Q | R){c/b} . (8)

Along reduction, the negative occurrence of c in prefix ac disappears. In the original process, the only visible usage of b is in
ab, which is a positive occurrence. Therefore, there is at most one negative occurrence of b in P , Q , R , hence (P | Q | R){c/b}
contains at most one negative occurrence of c. The resulting process is hence a Fu1 process. Finally, note that the following
reduction from Fu1 (the special case, when b = c) only makes disappear prefixes, and needs no special treatment:

ab.P | ab.Q −→Fu1 P | Q .

Polarised narrowing (Theorem 10) holds in Fu1 because every process of Fu1 is also a process of πP. Regarding the
Subject Reduction property, we observe that typechecking the process obtained after reduction in (8) may involve changing
the type of name c into a smaller type: after the reduction, name c is used at type Tb , which is a smaller type than the
type of c. Accordingly, the statement of Subject Reduction is refined:

D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360 359
Theorem 60. Let P be a Fu1 process. If � � P and P −→Fu1 P ′ , then �′ � P ′ , where for at most one name c, �′(c) ≤ �(c); for any
other name b �= c, �′(b) = �(b).

Proof (Sketch). By induction on −→Fu1, only the base case is interesting (closure by contexts and structural congruence
are handled by compositionality of the type system). There are two subcases, depending on the kind of whether the input
object or the output object is being replaced.

Suppose we have the following typings of each case, which we write with additional type annotations:

1. �, b : Tb � (νc : Tc)(ab.P | ac.Q | R) (using (7) the process reduces to (P | Q | R){b/c}),
2. �, c : Tc � (νb : Tb)(ab.P | ac.Q | R) (using (8) the process reduces to (P | Q | R){c/b}).

By definition of Fu1, P , Q , and R have no negative occurrence of c. Moreover, because of the typing rules, we have Tb ≤ Tc .
In the first case, since c does not appear in negative position in P | Q | R , applying positive narrowing on Tb ≤ Tc is

enough to conclude without changing the typing environment.
In the second case, we replace b with c, and assign type Tb to c in the typing environment for the resulting process.

This allows us to typecheck the newly created occurrences of c in the resulting process. The previously existing ones are
still well-typed using positive narrowing. �
Remark 61. Theorem 60 does not contradict Theorems 3 and 4: the calculus obeys a syntactical constraint, which restricts
the way processes can be composed. Indeed, it is not always the case that if P and Q are in Fu1, then P | Q is also in Fu1.
Therefore, in the proof of Theorem 3, it would be impossible in general to replace a with b using contexts like (ub | ua | −)

or (ub | va | uc | vc | −), since the latter is not a Fu1 context.

8. Concluding remarks and future work

Here we discuss some lines for future work, in addition to those already mentioned in the main text.
At the cost of renouncing to the duality between input and output prefixes, πP brings the advantages of both fusion

calculi (simple syntax, single binder) and the π -calculus (rich type systems and behavioural theory). We can in particular
envisage to study typed barbed equivalence in πP, which is an important tool to reason about the modelisation of systems.

We have presented and compared two semantics for πP, eager and by-need. The behavioural equalities determined by
the two semantics are incomparable (Example 20). However they do coincide under certain syntactic constraints (Theo-
rem 57). While we tend to consider the advantages so far uncovered for the by-need superior, more work is needed to draw
more definite conclusions.

A possible advantage of by-need is a smoother extension with dynamic operators like guarded choice, in which an action
may discard a component. (In the eager case it is unclear what the effect of an arc that acts on one of the summands of a
choice should be.) Choice would be useful for axiomatisations. In by-need, we would have for instance

(νb, c)ab.ac.(b|c) ∼ (νb, c)ab.ac.(b.c + c.b).

The law, valid in both πP and π , illustrates the possibility of generating fresh names that cannot be identified with other
names, even if they are exported. The law fails in fusion calculi as a recipient might decide to equate b and c (cf. Section 6.2).

The coinductive characterisation of behavioural equivalence in πP has been presented in the strong case, and should
be extended to the weak case. A compositional operational semantics for the eager semantics is not difficult to define. For
the by-need semantics, the situation is less simple. A major advantage of such semantics would be a simpler proof of the
congruence for parallel composition. (In the paper we have adopted an approach based on the reduction framework for
both semantics, for uniformity and to ease comparison.) By the time the current version of the paper has been completed,
a compositional presentation of the by-need operational semantics has been proposed [15].

The Psi calculi [1] provide a general framework for the (fully mechanised) behavioural theory of a generalisation of
several name-passing calculi, including Fusions and π . The Psi calculi rely on an equivalence relation on channels to specify
whether two channels can communicate. It could be interesting to study the representation of πP into Psi calculi [1].
Because of the generality of Psi, and in view of Section 3, adapting our results on types and behavioural equivalences for
πP seems delicate.

Works by Hüttel [19,20] have shown how types can be adapted from π to Psi calculi, giving a sorting system for Explicit
Fusions, in the case of [19] (Ref. [20] focuses on linear type systems). To our knowledge, no published work exists at the
moment concerning capability types for Psi calculi.

Another question we would like to study is the distributed implementation of πP. We believe that the ideas of the
Fusion Machine [10] can be adapted to execute πP processes in a distributed manner, for the eager semantics. While the
Fusion Machine uses (distributed) forwarders to provide an efficient implementation of equivalence classes between names,
in πP a forwarder a � b would be run to implement b/a. Implementing the by-need semantics should intuitively involve a
complex protocol, to test for a � b.

360 D. Hirschkoff et al. / Information and Computation 251 (2016) 335–360
For the execution of πP1 processes, we could furthermore exploit the property that the (distributed) agent implementing
a channel can host at most one forwarder pointing outwards. Theorem 57 tells us that such an implementation would
actually provide the by-need semantics for πP1 processes.

Moreover, the implementation could benefit from the fact that πP is a typed calculus. Much like types are useful for
modelling purposes, by making it possible to validate more equivalences, they also allow optimisations in programs, such
as inlining or tail-call optimisations.

Acknowledgments

The authors acknowledge support from the ANR projects 2010-BLAN-0305 PiCoq, ANR-14-CE25-0005 Elica and 12IS02001
PACE.

References

[1] J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: mobile processes, nominal data, and logic, in: Proceedings of the 24th Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2009, IEEE Computer Society, 2009, pp. 39–48.

[2] F. Bonchi, M.G. Buscemi, V. Ciancia, F. Gadducci, A presheaf environment for the explicit fusion calculus, J. Autom. Reason. 49 (2) (2012) 161–183.
[3] M. Boreale, M.G. Buscemi, U. Montanari, A general name binding mechanism, in: TGC, in: Lect. Notes Comput. Sci., vol. 3705, Springer, 2005, pp. 61–74.
[4] G. Boudol, Asynchrony and the Pi-Calculus, Technical report 1702, INRIA, 1992.
[5] G. Castagna, R. De Nicola, D. Varacca, Semantic subtyping for the pi-calculus, Theor. Comput. Sci. 398 (1–3) (2008) 217–242.
[6] R. De Nicola, M. Hennessy, Testing equivalences for processes, Theor. Comput. Sci. 34 (1984) 83–133.
[7] G.L. Ferrari, U. Montanari, E. Tuosto, B. Victor, K. Yemane, Modelling fusion calculus using HD-automata, in: Algebra and Coalgebra in Computer Science:

First International Conference, CALCO 2005, Proceedings, in: Lect. Notes Comput. Sci., vol. 3629, Springer, 2005, pp. 142–156.
[8] C. Fournet, G. Gonthier, The reflexive CHAM and the join-calculus, in: Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ACM Press, 1996, pp. 372–385.
[9] Y. Fu, The χ -calculus, in: Proceedings of the 1997 Advances in Parallel and Distributed Computing Conference, APDC ’97, IEEE Computer Society, 1997,

pp. 74–81.
[10] P. Gardner, C. Laneve, L. Wischik, The fusion machine, in: CONCUR 2002 – Concurrency Theory, 13th International Conference, Proceedings, in: Lect.

Notes Comput. Sci., vol. 2421, Springer, 2002, pp. 418–433.
[11] P. Gardner, L. Wischik, Explicit fusions, in: Mathematical Foundations of Computer Science 2000, 25th International Symposium, MFCS 2000, Proceed-

ings, in: Lect. Notes Comput. Sci., vol. 1893, Springer, 2000, pp. 373–382.
[12] M. Hennessy, A Distributed Pi-Calculus, Cambridge University Press, 2007.
[13] M. Hennessy, J. Riely, Resource access control in systems of mobile agents, Inf. Comput. 173 (2002) 82–120.
[14] D. Hirschkoff, J.-M. Madiot, D. Sangiorgi, Name-passing calculi: from fusions to preorders and types, in: 28th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2013, IEEE Computer Society, 2013, pp. 378–387.
[15] D. Hirschkoff, J.-M. Madiot, X. Xu, A behavioural theory for a π -calculus with preorders, J. Log. Algebraic Methods Program. 84 (6) (2015) 806–825.
[16] K. Honda, M. Tokoro, An object calculus for asynchronous communication, in: ECOOP’91 European Conference on Object-Oriented Programming, Pro-

ceedings, in: Lect. Notes Comput. Sci., vol. 512, Springer, 1991, pp. 133–147.
[17] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based programming, in: Programming

Languages and Systems – ESOP’98, 7th European Symposium on Programming, Held as Part of ETAPS’98, Proceedings, in: Lect. Notes Comput. Sci.,
vol. 1381, Springer, 1998, pp. 122–138.

[18] K. Honda, N. Yoshida, On reduction-based process semantics, Theor. Comput. Sci. 152 (2) (1995) 437–486.
[19] H. Hüttel, Typed �-calculi, in: CONCUR 2011 – Concurrency Theory – 22nd International Conference, Proceedings, in: Lect. Notes Comput. Sci.,

vol. 6901, 2011, pp. 265–279.
[20] H. Hüttel, Types for resources in �-calculi, in: Trustworthy Global Computing – 8th International Symposium, TGC 2013, Revised Selected Papers, in:

Lect. Notes Comput. Sci., vol. 8358, 2013, pp. 83–102.
[21] N. Kobayashi, Type systems for concurrent programs, in: 10th Anniversary Colloquium of UNU/IIST, in: Lect. Notes Comput. Sci., vol. 2757, Springer,

2003, pp. 439–453.
[22] N. Kobayashi, A new type system for deadlock-free processes, in: CONCUR 2006 – Concurrency Theory, 17th International Conference, Proceedings, in:

Lect. Notes Comput. Sci., vol. 4137, Springer, 2006, pp. 233–247.
[23] N. Kobayashi, B.C. Pierce, D.N. Turner, Linearity and the pi-calculus, ACM Trans. Program. Lang. Syst. 21 (5) (1999) 914–947. Preliminary summary

appeared in Proceedings of POPL’96.
[24] C. Laneve, B. Victor, Solos in concert, Math. Struct. Comput. Sci. 13 (5) (2003) 657–683.
[25] M. Merro, Locality in the Pi-Calculus and Applications to Distributed Objects, PhD thesis, École des Mines, France, 2000.
[26] M. Merro, D. Sangiorgi, On asynchrony in name-passing calculi, Math. Struct. Comput. Sci. 14 (5) (2004) 715–767.
[27] R. Milner, D. Sangiorgi, Barbed bisimulation, in: Automata, Languages and Programming, 19th International Colloquium, ICALP92, Proceedings, in: Lect.

Notes Comput. Sci., vol. 623, Springer, 1992, pp. 685–695.
[28] J. Parrow, B. Victor, The update calculus (extended abstract), in: Algebraic Methodology and Software Technology, 6th International Conference,

AMAST ’97, Proceedings, in: Lect. Notes Comput. Sci., vol. 1349, Springer, 1997, pp. 409–423.
[29] J. Parrow, B. Victor, The fusion calculus: expressiveness and symmetry in mobile processes, in: Thirteenth Annual IEEE Symposium on Logic in Computer

Science, IEEE Computer Society, 1998, pp. 176–185.
[30] J. Parrow, B. Victor, The tau-laws of fusion, in: CONCUR ’98: Concurrency Theory, 9th International Conference, Proceedings, in: Lect. Notes Comput.

Sci., vol. 1466, Springer, 1998, pp. 99–114.
[31] B.C. Pierce, D. Sangiorgi, Typing and subtyping for mobile processes, Math. Struct. Comput. Sci. 6 (5) (1996) 409–453.
[32] D. Sangiorgi, Pi-calculus, internal mobility, and agent-passing calculi, Theor. Comput. Sci. 167 (1–2) (1996) 235–274.
[33] D. Sangiorgi, D. Walker, The Pi-Calculus: a Theory of Mobile Processes, Cambridge University Press, 2001.
[34] L. Wischik, P. Gardner, Explicit fusions, Theor. Comput. Sci. 340 (3) (2005) 606–630.

http://refhub.elsevier.com/S0890-5401(16)30084-0/bib62656E6774736F6E3A6A6F68616E73736F6E3A706172726F773A766963746F723A6C6963733039s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib62656E6774736F6E3A6A6F68616E73736F6E3A706172726F773A766963746F723A6C6963733039s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A6A6F75726E616C732F6A61722F426F6E6368694243473132s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib62757363656D695F7563616C63s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib626F75646F6C3A617069s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib6361737461676E613A64656E69636F6C613A766172616363613A73656D616E7469633A73756274s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44654E48656E6Es1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F63616C636F2F466572726172694D5456593035s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F63616C636F2F466572726172694D5456593035s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F706F706C2F466F75726E6574473936s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F706F706C2F466F75726E6574473936s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib66755F636869s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib66755F636869s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib667573696F6E3A6D616368696E65s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib667573696F6E3A6D616368696E65s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib7769736368696B30305F6578706C696369745F667573696F6E73s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib7769736368696B30305F6578706C696369745F667573696F6E73s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A626F6F6B732F6461676C69622F30303138313133s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib68656E6E657373793A7269656C793A3032s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F6C6963732F4869727363686B6F66664D533133s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F6C6963732F4869727363686B6F66664D533133s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib484D583A6C74733A706950s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F65636F6F702F486F6E6461543931s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F65636F6F702F486F6E6461543931s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib686F6E64613A766173636F6E63656C6F733A6B75626F3A3938s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib686F6E64613A766173636F6E63656C6F733A6B75626F3A3938s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib686F6E64613A766173636F6E63656C6F733A6B75626F3A3938s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib486F596F3935s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F636F6E6375722F48757474656C3131s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F636F6E6375722F48757474656C3131s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F7467632F48757474656C3133s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F7467632F48757474656C3133s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F756E752F4B6F626179617368693032s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F756E752F4B6F626179617368693032s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F636F6E6375722F4B6F626179617368693036s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F636F6E6375722F4B6F626179617368693036s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib4B6F506954753939s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib4B6F506954753939s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib6C616E6576655F736F6C6F73s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib4D6572726F546865736973s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib6D6572726F5F6173796E6368726F6E79s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F6963616C702F4D696C6E6572533932s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F6963616C702F4D696C6E6572533932s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib766963746F725F757064617465s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib766963746F725F757064617465s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib706172726F775F667573696F6Es1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib706172726F775F667573696F6Es1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F636F6E6375722F506172726F77563938s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib44424C503A636F6E662F636F6E6375722F506172726F77563938s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib7069657263655F73616E67696F7267695F7479706573s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib73616E67696F7267695F706969s1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib73616E67696F7267695F77616C6B65725F626F6F6Bs1
http://refhub.elsevier.com/S0890-5401(16)30084-0/bib7769736368696B30355F6578706C696369745F667573696F6E73s1

	Name-passing calculi: From fusions to preorders and types
	1 Introduction
	2 Background on name-passing calculi
	3 Typing and subtyping with fusions
	4 A calculus with name preorders
	4.1 Preorders, positive and negative occurrences
	4.2 Types

	5 Behaviours
	5.1 An alternative semantics: by-need reduction
	5.2 Context-free characterisations of barbed congruence
	5.2.1 An LTS for by-need semantics
	5.2.2 Congruence
	5.2.3 Completeness of ~bn

	6 Expressiveness of πP
	6.1 Explicit Fusions
	6.2 π-calculus
	6.2.1 Operational correspondence for synchronous processes
	6.2.2 Full abstraction for asynchronous processes

	7 Unique negative occurrences of names
	7.1 Behavioural properties of constrained calculi
	7.2 Capabilities and subtypes in constrained fusions

	8 Concluding remarks and future work
	Acknowledgments
	References

