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1 Introduction
A formal definition can be a valuable foundation for a programming language. A mechanized

semantics rules out the inaccuracies that usually appear in informal specifications and forms

a bedrock for verified software. It can be used to test or verify an interpreter, a compiler, or a static

analyzer; to prove the soundness of a type system; and to prove the soundness of a program logic.

Although writing down a complete formal description of a realistic programming language used

to be a formidable task, we have entered an era where such an achievement is gradually becoming

more commonplace. Several prominent low-level programming languages have been partially or

fully formalized, including C [Norrish 1998; Ellison and Rosu 2012; Krebbers et al. 2014; Krebbers

2015] and its weak memory model [Lahav et al. 2017], JavaScript [Bodin et al. 2014; Gardner et al.

2015], and the intermediate languages WebAssembly [Watt 2021; Watt et al. 2021, 2023], MIR [Jung

et al. 2018a, 2020], and LLVM IR [Zhao et al. 2012; Zakowski et al. 2021].

Among high-level programming languages, few have a formal semantics. The Definition of

Standard ML [Milner et al. 1997] has been mechanized [Lee et al. 2007; Harper and Crary 2014;

MacQueen et al. 2020], and the CakeML verified compiler [Kumar et al. 2014] accepts a fragment of

Standard ML as its source language. Parts of Java have been mechanized [Klein and Nipkow 2006]

and its weak memory model has been studied and formalized [Manson et al. 2005; Lochbihler 2012;

Bender and Palsberg 2019]. However, other prominent high-level programming languages, such as

Haskell, Scala, and OCaml, lack formal definitions. We believe that this lack must be remedied.

While small-step operational semantics [Plotkin 2004; Wright and Felleisen 1994], can describe

the semantics of any programming language, it is considered heavy when used at a large scale

Authors’ Contact Information: Remy Seassau, remy.seassau@inria.fr, Inria, Paris, France; Irene Yoon, inbox@ireneyoon.com,

Inria, Paris, France; Jean-Marie Madiot, jean-marie.madiot@inria.fr, Inria, Paris, France; François Pottier, francois.pottier@

inria.fr, Inria, Paris, France.

2025. ACM 2475-1421/2025/1-ART1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.

HTTPS://ORCID.ORG/0009-0008-6226-1413
HTTPS://ORCID.ORG/0000-0003-3388-1257
HTTPS://ORCID.ORG/0009-0009-2723-8418
HTTPS://ORCID.ORG/0000-0002-4069-1235
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0008-6226-1413
https://orcid.org/0000-0003-3388-1257
https://orcid.org/0009-0009-2723-8418
https://orcid.org/0000-0002-4069-1235
https://doi.org/10.1145/nnnnnnn.nnnnnnn


1:2 Remy Seassau, Irene Yoon, Jean-Marie Madiot, and François Pottier

[Bodin et al. 2019] and leads to semantic definitions that can be difficult to understand or maintain.

The search for new semantic styles that are more elegant or more modular, therefore making

formalization more manageable, is ongoing [Xia et al. 2020; Charguéraud et al. 2023; Frumin et al.

2024; Vistrup et al. 2025; Stepanenko et al. 2025].

In this paper, we focus on OCaml [Leroy et al. 2024], a descendant of Milner’s ML [1978].

OCaml’s main features include first-class functions, algebraic data types, pattern matching, dynamic

memory allocation, mutable data, modules and functors [Leroy 2000], objects and classes [Rémy and

Vouillon 1998], exceptions, delimited control effects [Sivaramakrishnan et al. 2021], concurrency,

weak shared-memory [Sivaramakrishnan et al. 2020], and more. OCaml is widely used in academia,

both in education and research, and has found a number of key industrial users [Leandersson 2022].

There are several OCaml compilers, which share a common front-end and differ in their back-

ends. These include the OCaml bytecode and native code compilers [Leroy et al. 2024], the flambda
and flambda2 native code compilers, two OCaml-to-JavaScript compilers [Vouillon and Balat 2014;

Monteiro 2025], and two OCaml-to-WebAssembly compilers [Andrès et al. 2023; Vouillon 2023].

Furthermore, the reference interpreter Camlboot [Courant et al. 2022] supports a subset of OCaml

that is large enough to execute the OCaml compiler itself. It seems desirable for these diverse tools

to agree on a common formal foundation.

The main contributions of this paper are as follows:

• Using Rocq (ex-Coq), we formalize the abstract syntax and dynamic semantics of OLang,

a sequential fragment of OCaml. This fragment includes first-class functions, ordinary and

extensible algebraic data types, pattern matching, references, exceptions, deep and shallow

effect handlers, and nested modules (not functors). It has unspecified evaluation order.

• We implement a translator of OCaml into OLang. This translator consumes a typed OCaml

AST, which is produced by the OCaml type-checker, and emits the corresponding OLang

AST as a Rocq source file. This translator is simple, and must be trusted.

• We organize the semantics of OLang in two layers. The upper layer is a monadic interpreter;

the lower layer is an original custom monad. The monad’s combinators form the interface

between the two layers. We choose this style because a monadic interpreter is easy to

understand and review. In the lower layer, monadic computations are represented as trees,

equipped with a small-step operational semantics.

• We define two program logics for OLang. A stateless Hoare Logic, Horus, allows reasoning

about a class of pure programs, which cannot diverge, exploit mutable state, or perform

control effects, but do have access to exceptions and non-determinism. A Separation Logic,

Osiris, allows reasoning about arbitrary OLang programs, which may exhibit all kinds of

effects. It is based on Iris [Jung et al. 2018b]. The two logics can interoperate: a Horus proof

about a pure program fragment can be exploited inside an Osiris proof of a larger program.

Our work is carried out using Rocq; our results are machine-checked. Each reasoning rule in

Horus and Osiris is a lemma. Furthermore, we prove the soundness of both program logics with

respect to the dynamic semantics.

Although no single feature of OLang is new, its combination of features is fairly complex.

In particular, Osiris is the first program logic that supports OCaml’s combination of exceptions and

effect handlers (§2). In fact, the definition of semantics and program logics for delimited control

effects is still the subject of current research [Stepanenko et al. 2025].

The paper begins with a discussion of our main design choices (§2). Then, we present our formal

semantics, starting with the monadic interpreter (§3), and continuing with the monad (§4, §5).

We discuss how our semantics might be validated (§6). We move on to a presentation of Horus (§7)

and Osiris (§8). The paper ends with discussions of related work (§9) and future work (§10).
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2 Architecture and Design Choices
A project of this scale raises many design questions. Our semantics must be elegant and practical:

we want it to be easy to understand, test, and maintain. Furthermore, it must serve as a foundation

for our program logics: that is, we want to establish that our reasoning rules are sound with respect

to this semantics. In the following, we review some of our main design choices. They contribute to

answering three main questions:

• What style should be used in the definition of the semantics?

• What view of the programming language should be offered to the user?

• What style of reasoning should be offered to the user?

Semantic style: hybrid monadic/operational semantics. Our semantics is a modular composition of

two layers, each of which uses a distinct style. The top layer is a monadic interpreter. It is easy

to understand and lends itself well to execution, either inside Rocq or via extraction. This layer

is denotational: the interpreter is defined by induction on the syntax of the program. The bottom

layer provides a construction of the monad that the interpreter relies upon. It supports a large

collection of effects (Figure 2). In this layer, a computation is represented as a tree whose nodes

include final outcomes, observable events, parallel compositions, and control delimiters. This layer

is operational: the behavior of a computation is given by a small-step reduction relation. We strive

for simplicity. Whereas related work has used co-inductive trees [Xia et al. 2020] and guarded

recursive trees [Frumin et al. 2024; Stepanenko et al. 2025], we use just finite trees. Whereas many

authors have placed emphasis on defining the meaning of each effect in isolation [Xia et al. 2020;

Yoon et al. 2022; Frumin et al. 2024; Vistrup et al. 2025], we provide a monolithic construction.

Semantic style: environment-based semantics. The literature on type systems [Wright and Felleisen

1994] and program logics [Jung et al. 2018b, §6.1] often uses substitution-based semantics, where

certain reduction steps involve replacing variables with values. In an environment-based semantics,

instead, an explicit map of variables to values is maintained. Our monadic interpreter uses an

environment-based style because it is more natural, more efficient, and seems better suited to the

task of describing OCaml, where (due to open and include) name resolution is nontrivial.

Language view: untyped, yet high-level. The semantics of OLang is untyped. There is an inductive

type of all values, val. Every value carries a tag. This tag is inspected by dynamic checks that

can cause runtime failures, also known as crashes. For example, providing a Boolean value as

an argument to an integer addition operation causes a crash. Thus, our semantics offers a high-level

view of values: a value is not just a sequence of bits in memory; it is a finite tree. This approach is

standard: it is that of untyped 𝜆-calculus. It offers two benefits. First, it lets us assign a meaning to

all programs, not just well-typed programs. This lets us support certain uses of unsafe type casts.

Second, it removes the need to define OCaml’s type system, which would be a formidable task.

Our translator of OCaml into OLang is intended to be as simple as possible. This matters, as it is

unverified and must be trusted. Yet, some ambiguities in OCaml’s syntax create a potential difficulty.

For example, in OCaml, two distinct algebraic data types can have data constructors named A.

In OLang, this ambiguity does not exist. To eliminate this ambiguity while keeping our translator

simple, we let the OCaml type-checker perform type-based disambiguation. Thus, although OLang

is untyped, our translator expects OCaml code that has been accepted by the OCaml type-checker.

This code is not necessarily “well-typed”, though, as it may contain unsafe type casts.

Language view: unspecified evaluation order. OCaml has unspecified evaluation order: in many

constructs, such as an application of a function to 𝑛 arguments or the construction of a tuple with

𝑛 + 1 fields, the order in which the 𝑛 + 1 subexpressions are evaluated is unspecified. It is not
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necessarily left-to-right or right-to-left; it can be an arbitrary permutation. The order that is chosen

in practice can vary across compilers and can be difficult for the user to predict. Furthermore, some

compiler optimizations, such as tail modulo cons [Allain et al. 2025], exploit the opportunity of

choosing an evaluation order.

To account for this feature, our semantics of OLang must be non-deterministic: it must permit

all of the permutations that the OCaml manual allows. In fact, by making our semantics even more

relaxed than required by the manual, we are able to simplify it. We allow parallel evaluation of

the subexpressions. This let us view an 𝑛-ary function application as a nest of binary function

applications, while still allowing the 𝑛 + 1 subexpressions to be evaluated in an arbitrary order.

This decision implies that some programs that have only one possible result according to the

OCaml manual can in our semantics have several possible results. An example is let r = ref 0 in

(incr r, incr r); !r, where both subexpressions of the pair increment the reference r. Because

the two subexpressions incr r run in parallel, both might read 0 from r and write 1 into r. The

final result can be 1 or 2.

With program verification in mind, this over-approximation seems acceptable, for two reasons.

First, adopting a stricter semantics, which involves non-deterministic choices but does not allow

parallel evaluation, would not allow us to offer simpler reasoning rules. To substantiate this claim,

we refer the reader to the treatments of non-interleaved function calls in C by Krebbers [2014]

and by Frumin et al. [2019], which are interesting but complex, as they involve shared resource

invariants. Second, assuming that the user who verifies a program has control over the source code,

it is easy to use an explicit sequence in places where this helps verify the code.

In an application to compiler verification, this over-approximation may be more problematic.

Although adopting a non-deterministic semantics for the source language offers more freedom to

the compiler, a user of a compiler likely does not expect the above example program to return 1,

which is an allowed output in our non-deterministic semantics. Perhaps, in the context of verifying

a compiler whose source language is OLang, one would prefer to adopt a stricter semantics of

OLang. One would separately prove that the two semantics are related.

Reasoning style: source-level reasoning. We name our monad micro because it is an intermediate

language, or “microcode”, into which OLang code is expanded. In principle, our interpreter can be

used as a compiler: by applying the interpreter to an OLang AST and by letting Rocq perform

partial evaluation, one obtains a micro AST. This is the first Futamura projection [1999a; 1999b].

Taking this idea seriously, one might wish to expand OLang code into micro code and let the user

perform program verification at this level, by applying the reasoning rules of Figures 7 and 10.

Thus, one would save the work of building program logics for OLang. We experimented with this

idea, but found it impractical: unless Rocq’s reduction strategy is carefully controlled, the size of

the goal explodes. Furthermore, we do not truly wish for the end user to work at the micro level.
We prefer to develop program logics for OLang and to let the user work at the source level.

Reasoning style: two program logics. We propose two program logics for OLang. Horus can verify

pure programs, which must terminate and cannot use mutable state or control effects; Osiris can

verify arbitrary programs. Horus is much simpler than Osiris, as it is a stateless Hoare Logic,

whereas Osiris is an Iris-based Separation Logic. We believe that the user will be happy to work

with Horus where possible and that Horus offers a gentler learning curve. Furthermore, Horus

can prove termination, whereas Osiris cannot: following most of the Iris literature, Osiris imposes

just partial correctness, because this makes verifying concurrent programs easier. Finally, Horus

helps us study certain problems (such as the treatment of pattern matching) in a simpler setting.
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val := VInt (i : int)
VTuple (𝑣𝑠 : list val)
VData (𝑐 : string) (𝑣𝑠 : list val)
VXData (ℓ : loc) (𝑣𝑠 : list val)
VLoc (ℓ : loc) | VCont (ℓ : loc)
VClo (𝜂 : env) (𝑎 : anonfun)

loc := Z
env := list (var × val)
anonfun := AnonFun (𝑥 : var) (𝑒 : expr)
exn := val
eff := val

Fig. 1. OLang’s type of values

3 A Monadic Interpreter
Our semantics takes the form of amonadic interpreter [Liang et al. 1995] for OLang. This interpreter
is implemented in Rocq, a pure and total programming language. It uses the micro monad to

represent computational effects that cannot be expressed in Rocq. They include divergence, fatal

failure (crashes), non-fatal failure (exceptions), state, parallelism, nondeterminism, and delimited

control. The micro monad offers a fixed collection of primitive effectful operations, or combinators,
which the interpreter exploits.

In this section, we offer a gradual exposition of the interpreter. At the same time, as we go, we

present the combinators that the interpreter needs. For reference, these combinators are listed

in Figure 2; they form the public API of the micro monad. In the next sections (§4, §5), we explain

how the micro monad is defined and equipped with a small-step operational semantics.

3.1 Syntax
The syntax of OLang involves several syntactic categories, including expressions, patterns, module

expressions, structure items, and many more. In this paper, for the sake of brevity, we put emphasis

mainly on expressions. We use a deep embedding [Gibbons and Wu 2014]: that is, we represent

OLang’s syntax in Rocq via several inductive types, such as expr , the type of expressions (whose
definition is not shown). The syntax of OLang closely resembles the surface syntax of OCaml, so

it is easy to transform OCaml code into (Rocq definitions of) OLang abstract syntax. We provide

a translator for this purpose. In our syntax, variables are represented as strings.

3.2 Values and Environments
The result of interpreting an expression is a value. We represent values in Rocq as an inductive type

val, whose definition appears in Figure 1. Because OLang is untyped, this type represents all kinds

of values, including machine integers (VInt), tuples (VTuple), inhabitants of algebraic data types
(VData) and extensible algebraic data types (VXData), addresses of heap-allocated memory blocks

(VLoc) and of heap-allocated continuations (VCont), closures (VClo), and more; not all cases are

shown in Figure 1.

In VData, a data constructor is identified by its name, a string. In VXData, it is identified by

a memory location. A mapping of names (of constructors of extensible algebraic data types) to

memory locations is maintained as part of the interpreter’s environment.

Exceptions and effects carry a first-class value, which we refer to as the “payload”. Therefore, we

define the types exn and eff as synonyms for val.
Our semantics is environment-based. An environment 𝜂 is a finite map of variables to values:

we represent it as an association list. Because a closure (VClo) contains an environment, the types val
and env are mutually inductive.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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Inductive outcome2 (𝐴𝐸 : Type) : Type := Ret2 (𝑎 : 𝐴) | Throw2 (𝑒 : 𝐸)
Inductive outcome3 (𝐴𝐸 : Type) : Type := Ret3 (𝑎 : 𝐴) | Throw3 (𝑒 : 𝐸) | Perform3

(𝑣 : eff ) (ℓ : loc)
micro : Type→ Type→ Type
ret : 𝐴→micro 𝐴 𝐸

throw : 𝐸 →micro 𝐴 𝐸

try
2

: micro 𝐵 𝐸′ → (outcome2 𝐵 𝐸′ → micro 𝐴 𝐸) →micro 𝐴 𝐸

bind : micro 𝐵 𝐸 → (𝐵 → micro 𝐴 𝐸) →micro 𝐴 𝐸 — derived from try
2

crash : micro 𝐴 𝐸

please_eval : env → expr →micro val exn
alloc : val →micro loc exn
load : loc →micro val exn
store : loc → val →micro val exn
par : micro 𝐴1 𝐸 → micro 𝐴2 𝐸 →micro (𝐴1 ×𝐴2) 𝐸
handle : micro val exn→ (outcome3 val exn→ micro 𝐴 𝐸) →micro 𝐴 𝐸

perform : eff →micro val exn
resume : loc → outcome2 val exn→micro val exn
wrap : loc → env → handler →micro loc exn

Fig. 2. The micro monad: public interface

3.3 Structure of the Monadic Interpreter
The interpreter is composed of several mutually recursive functions. There is typically one function

for each syntactic category of OLang along with a number of auxiliary functions. In this paper,

we are mainly interested in the function eval_expr : env → expr → micro val exn, which forms

the heart of the monadic interpreter. We write eval as a short-hand for eval_expr . The meta-

level expression eval 𝜂 𝑒 evaluates the OLang expression 𝑒 under the environment 𝜂. Its type is

micro val exn. This means that it is a monadic computation that can produce a normal result of

type val (an OLang value) or an abnormal result of type exn (an OLang exception). It can also

exhibit a range of effectful behaviors, including crashing, diverging, and more; we discuss these

later on. eval is defined by induction on its second argument, an abstract syntax tree 𝑒 . In the

following subsections (§3.4–§3.9), we present several fragments of its definition. This illustrates

how the combinators of the micro monad are used by the interpreter.

3.4 Integer Arithmetic / Return, Bind, Crash
We use OLang’s integer arithmetic expressions to illustrate the most basic combinators of the

micro monad, whose full list appears in Figure 2. The computation ret 𝑎 returns the result 𝑎.

The sequential composition of two computations, bind𝑚1 (𝜆𝑥.𝑚2), is also written 𝑥 ← 𝑚1; 𝑚2.

The combinator crash can be understood as a fatal failure or as undefined behavior; it is a bad event

that must be avoided. The following code fragment (left) shows how integer literals and unary

negation are evaluated. It uses two auxiliary functions val_as_int and as_int (right).
Fixpoint eval 𝜂 e :=

match e with

| EInt i⇒
r e t (VInt (int.repr i))

| EIntNeg e⇒
i← as_int (eval 𝜂 e) ;

r e t (VInt (int.neg i))

| ...

Definition val_as_int (v : val) : micro int exn :=

match v with

| VInt i⇒ r e t i

| _ ⇒ crash
end.

Definition as_int (m : micro val exn) : micro int exn :=

v← m ; val_as_int v.
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An integer literal expression EInt 𝑖 carries an unbounded integer 𝑖 , whose type is Z.1 We convert 𝑖

to a machine integer via int .repr , convert it to an integer value via VInt, then return it. An integer

negation expression EIntNeg 𝑒 carries a subexpression 𝑒 . We first evaluate 𝑒 via a recursive call

to eval. Then, using as_int, we check that the resulting value is an integer value. If as_int is applied
to an integer value VInt 𝑖 , then it returns the machine integer 𝑖; otherwise, it crashes.

3.5 Algebraic Data Types / Parallel Composition
OLang supports user-defined algebraic data types. In EData 𝑐 𝑒𝑠 , the data constructor 𝑐 is applied
to the expressions 𝑒𝑠 . The order of evaluation of these expressions is unspecified. Similarly, in the

construction of a tuple, evaluation order is unspecified. To model this, we rely on the binary parallel

composition combinator par (Figure 2). Here are the relevant cases in the definition of eval (left):
| EData c es⇒

vs← evals 𝜂 es ;

r e t (VData c vs)

| ETuple es⇒
vs← evals 𝜂 es ;

r e t (VTuple vs)

Fixpoint evals 𝜂 (es : list expr) : micro (list val) exn :=

match es with

| []⇒ r e t []

| e :: es⇒
'(v, vs)← par (eval 𝜂 e) (evals 𝜂 es) ;

r e t (v :: vs) end.

In the auxiliary function evals (right), par is used to evaluate one expression 𝑒 and the remaining

expressions 𝑒𝑠 in parallel. This yields a pair of a value 𝑣 and a list of values 𝑣𝑠 . The computation

par𝑚1𝑚2 lets𝑚1 and𝑚2 run in parallel and produces a pair of their results. It is nondeterministic:

the effects of𝑚1 and𝑚2 can take place in an arbitrary order and can be interleaved.

3.6 First-Class Functions / Divergence
In OLang, all functions are unary; function application is binary.We represent a function fun x -> e

as the expression EAnonFun (AnonFun 𝑥 𝑒). Evaluating it produces a closure VClo 𝜂 (AnonFun 𝑥 𝑒)
where the current environment 𝜂 is captured.

| EAnonFun a⇒
r e t (VClo 𝜂 a)

| EApp e1 e2⇒
'(v1, v2)← par (eval 𝜂 e1) (eval 𝜂 e2) ;

call v1 v2

Definition call v1 v2 : micro val exn :=

match v1 with

| VClo 𝜂 (AnonFun x e)⇒
please_eval ((x, v2) :: 𝜂) e

| _⇒ crash end.

In a function application, par is again used to allow unspecified evaluation order. After evaluating

the function 𝑒1 and the argument 𝑒2, we invoke the auxiliary function call. This function first

checks that 𝑣1 is a closure; then, it executes the function body 𝑒 , in the closure’s environment,

extended with a binding of the formal parameter 𝑥 to the actual argument 𝑣2. For this purpose,

instead of eval, we use the combinator please_eval (Figure 2), whose type is the same as that of eval.
Our host language, Rocq, allows writing terminating functions only; a plain recursive call would

be rejected. please_eval can be understood as a request for a potentially dangerous recursive call

(one that could cause divergence), as opposed to a native recursive call. This idea is due to McBride

[2015], who showed that “general recursive definitions can be represented in the free monad”.

OLang also supports (mutually) recursive functions: the syntax of expressions includes ELetRec,
and the syntax of values includes recursive closures (VCloRec). In the paper, they are omitted.

1
In OCaml, machine integers are signed and have a fixed bit width 𝑤. The value of 𝑤 is unspecified, and thus our semantics

is parameterized by it. The manual explicitly states that 𝑤 can be 31, 32, or 63, but does not rule out other values. We

assume 𝑤 ≥ 31. In Rocq, we write int for the type of signed integers of bit width 𝑤, which lie in the semi-open interval

[−2𝑤−1, 2𝑤−1 ) . We write int .repr for the projection of Z into int. Our Rocq library int, which is borrowed from CompCert,

defines the usual operations on machine integers.
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3.7 State / Alloc, Load, Store
OLang has mutable references. To define their semantics, we rely on three combinators offered

by the micro monad, namely alloc, load, and store (Figure 2). Thus, support for dynamic memory

allocation and mutable state is built into the monad.

3.8 Exceptions / Throw
In OCaml, an exception is raised using the primitive construct “raise e”. Then, it propagates up

to the nearest exception handler, which can either handle it (that is, catch it) or let it propagate

further. An exception handler takes the form “match e with bs” where the list of branches bs can

contain value-handling branches “p -> e” and exception-handling branches “exception p -> e”

where p is a pattern.2

To interpret “raise e”, we use the combinator throw (Figure 2).

| ERaise e⇒
v← eval 𝜂 e ; throw v

In this code fragment, the value 𝑣 has type val. We have defined the type exn as a synonym

for val, so throw 𝑣 has type micro val exn, as required for this code fragment to be well-typed.

In OCaml, the static type system requires all exceptions to have type exn, a predefined extensible

algebraic data type.
3
This guarantees that all exception-raising sites and all exception handlers

agree on a common type. In a dynamic semantics, though, there is no need for such a restriction.

Therefore, in the above code fragment, no dynamic tag check is applied to the value 𝑣 .

If the construct “match e with bs” could handle just normal and exceptional outcomes then

we would interpret it using the monadic combinator try
2
(Figure 2), a generalization of bind. In

the sequential composition try
2
𝑚 𝑓 , the computation 𝑓 expects a parameter of type outcome2 𝐵 𝐸′,

a sum type that can represent both normal and exceptional outcomes. However, the match construct

is more powerful than this: in addition to normal and exceptional outcomes, it can handle delimited

control effects. We defer an explanation of it to §3.9.

3.9 Delimited Control Effects and Handlers / Perform, Handle, Resume, Install
Let us briefly review OCaml’s control effects and effect handlers [Sivaramakrishnan et al. 2021]

before presenting the manner in which our interpreter supports these features.

Overview. The OCaml expression perform e performs an effect. To a certain extent, this is

analogous to raising an exception via raise e: indeed, both constructs interrupt the normal flow

of computation and transfer control to a handler. Yet, from the point of view of the context that

surrounds them, the expressions raise e and perform e behave differently: whereas raise e always

raises an exception, perform e can appear to return a value, to raise an exception, or to never

terminate. The choice between these alternatives is up to the handler. Indeed, an effect handler

receives a continuation k, which can be thought of as “the computation that has been suspended by

perform e”, or “the context that surrounds perform e and awaits its outcome”. If this continuation

is continued then perform e appears to return a value; if it is discontinued then perform e appears

to raise an exception. More precisely, if continue k v is executed then perform e appears to return

the value v; if discontinue k v is executed then perform e appears to raise the exception v. In

either case, we say that the continuation k is resumed.
Effect handlers come in two flavors. A shallow handler monitors a computation until one effect is

performed; it handles this effect, then disappears. A deep handler monitors a computation until this

2
The syntax of patterns is not shown in the paper.

3
Allocating a new exception name via “exception E of int” is sugar for “type exn += E of int”.
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computation terminates; it successively handles all of the effects that this computation performs. In

OCaml’s surface syntax, as of OCaml 5.3, a deep effect handler takes the form “match e with bs”

where the list of branches bs contains at least one effect-handling branch effect p, k -> e'. This

branch is entered if the value that was passed to perform matches the pattern p. OCaml offers

no surface syntax for shallow handlers; instead, they are accessed via the library Effect.Shallow.

In this paper, we discuss deep handlers only, as they seem more common and somewhat easier to

use. Our semantics and reasoning rules do support shallow handlers. Our translator does not yet

support them, and we do not yet have examples of verified code that uses them.

Performing an effect. Our interpretation of perform e appears in the following fragment of the

definition of eval. It uses the monadic combinator perform (Figure 2). This combinator is meant to

interact with the combinator handle, which is discussed later on in this section.

| EPerform e⇒
v← eval 𝜂 e ;

perform v

| EMatch e bs⇒
handle (eval 𝜂 e)

(wrap_eval_branches 𝜂 bs)

| EContinue e1 e2⇒
'(l, v)← par (as_cont (eval 𝜂 e1)) (eval 𝜂 e2) ;

resume l (Ret2 v)

| EDiscontinue e1 e2⇒
'(l, v)← par (as_cont (eval 𝜂 e1)) (eval 𝜂 e2) ;

resume l (Throw2 v)

The micro monad offers just a bare-bones effect handling facility. A handler that is installed

via handle is shallow: it handles at most one effect, then vanishes. Furthermore, it is catch-all:
it always handles an effect that it observes; it never allows this effect to be propagated up to the next

handler. Thus, in the definition of eval and of its auxiliary functions, we must explicitly implement

(A) the self-replicating behavior of deep handlers and (B) the propagation of an effect from a handler

that is unable to handle this effect up to the next handler.

Resuming a continuation. Our interpretations of continue e1 e2 and discontinue e1 e2 also

appear in the above fragment of eval. They expect e1 to produce a stored continuation, that is, a value
of the form VCont ℓ , where ℓ is a heap address where a continuation is stored. This dynamic check

is carried out by the auxiliary function as_cont (not shown). Both rely on the combinator resume
(Figure 2), whose arguments are a heap address where a continuation is stored and an outcome

with which to resume this continuation. This outcome has type outcome2 val exn. In continue,

the continuation is resumed with a normal outcome Ret2 𝑣 ; in discontinue, it is resumed with

an exceptional outcome Throw2 𝑣 .

Handling effects. Our interpretation of “match e with bs” also appears in the above fragment.

To interpret this construct, we evaluate the expression e in the scope of an effect handler. To install

this handler and to delimit its scope, we use handle (Figure 2). handle𝑚ℎ runs the computation𝑚

and lets the handler ℎ inspect its outcome, which can be one of three events: normal termination,

exceptional termination, or an effect. The sum type outcome3 (Figure 2) describes these three cases.
In the event where an effect takes place, the outcome Perform

3
𝑣 ℓ carries the effect’s payload 𝑣 : eff

and the stored continuation ℓ : loc. By convention, when a handler ℎ is invoked, the continuation

has been captured and stored in the heap already; the handler receives its address.

Our handler, 𝜆𝑜.wrap_eval_branches 𝜂 bs 𝑜 , is defined in two lines (Figure 3). First, via the

auxiliary function wrap_outcome (not shown), the outcome o is wrapped in a copy of the effect

handler match ... with bs. Then, it is passed on to the function eval_branches, which successively

tests whether each branch in the list bs is able to deal with this outcome. These two steps are

discussed in the next two paragraphs.
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Fixpoint eval_branches 𝜂 o bs : micro val exn :=

match bs with

| Branch cp e :: bs⇒
try2 (eval_cpat 𝜂 𝜂 cp o) (𝜆 o⇒
match o with

| Ret2 𝜂' ⇒ eval 𝜂' e

| Throw2 ()⇒ eval_branches 𝜂 o bs

end)

| []⇒
match o with

| Ret3 _ ⇒ crash
| Throw3 v⇒ throw v

| Perform3 v l⇒
try2 (perform v) (𝜆 o⇒ resume l o)

end

end.

Fixpoint wrap_eval_branches 𝜂 bs o :=

o← wrap_outcome 𝜂 bs o ;

eval_branches 𝜂 o bs.

Fixpoint eval_cpat 𝜂 𝛿 cp o

: micro env unit :=

match cp, o with

| CVal p, Ret3 v⇒
eval_pat 𝜂 𝛿 p v

| CExc p, Throw3 v⇒
eval_pat 𝜂 𝛿 p v

| CEff pe pk, Perform3 e k⇒
𝛿 ← eval_pat 𝜂 𝛿 pe e ;

eval_pat 𝜂 𝛿 pk (VCont k)

| _, _⇒ throw ()

end.

Fig. 3. Case analysis on outcomes

Wrapping a continuation in a handler. In the case where the outcome o is an effect (Perform
3
),

which carries a stored continuation, wrap_outcome wraps this continuation in a copy of the effect

handler match ... with bs. This serves two purposes at once: first, this is needed to obtain the

self-replicating behavior of a deep handler (A); second, this is required in the event that this effect

is not handled by this handler and must be propagated upwards (B). To wrap the continuation in

a handler, wrap_outcome uses the monadic combinator wrap (Figure 2), which returns a new stored

continuation. In the other two cases (Ret3, Throw3), wrap_outcome acts as an identity function.

Case analysis on outcomes. The function eval_branches (Figure 3) performs case analysis on

an outcome. Its code can be summed up as follows: try each branch in the list bs until either

a branch applies to this outcome or the end of the list is reached. If a branch applies, execute this

branch. If no branch applies, propagate this outcome.

A branch takes the form Branch cp 𝑒 , where cp is a computation pattern. The abstract syntax
of computation patterns includes forms that match a normal result (CVal), an exceptional result

(CExc), and an effect (CEff ). The function eval_cpat (Figure 3) determines whether an outcome

matches a computation pattern. It relies on the meta-level expression eval_pat 𝜂 𝛿 𝑝 𝑣 , which

matches the value 𝑣 against the pattern 𝑝 . These functions return an extended environment if

pattern matching succeeds, throw a metal-level exception (throw ()) if pattern matching fails, and

crash if the pattern and the value have incompatible tags: this occurs, for example, if 𝑝 is a tuple

pattern and 𝑣 is an integer value.

When eval_branches runs out of branches, it behaves as follows. If o is a normal outcome

(Ret3), then a crash occurs. Indeed, we want a non-exhaustive case analysis to be considered

an undesirable behavior. If o is an exceptional (Throw3) or effectful (Perform3
) outcome, then it is

propagated. Technically, it is converted back to a monadic computation, whose behavior can then

be observed by the next enclosing handler. An exceptional outcome is converted to a computation

via throw; an effectful outcome is converted via perform. In the latter case, whereas ℓ is a stored

continuation (a memory location), 𝜆𝑜. resume ℓ 𝑜 is a semantic continuation (a function), which

forms a suitable argument for try
2
. Thus, try

2
(perform 𝑣) (𝜆𝑜. resume ℓ 𝑜) performs an effect with

payload 𝑣 and continuation ℓ .
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Inductivemicro (𝐴 : Type) (𝐸 : Type) : Type :=
| Ret : 𝐴→ micro 𝐴 𝐸

| Throw : 𝐸 → micro 𝐴 𝐸

| Crash : micro 𝐴 𝐸

| Stop : code 𝑋 𝑌 𝐸′ → 𝑋 → (outcome2 𝑌 𝐸′ → micro 𝐴 𝐸) → micro 𝐴 𝐸

| Par : micro 𝐴1 𝐸
′ → micro 𝐴2 𝐸

′ → (outcome2 (𝐴1 ×𝐴2) 𝐸′ → micro 𝐴 𝐸) → micro 𝐴 𝐸

| Handle : micro val exn→ (outcome3 val exn→ micro 𝐴 𝐸) → micro 𝐴 𝐸

Fig. 4. The micro monad: definition

4 The Micro Monad
The micro monad offers an abstract type of computations along with its fundamental combinators,

ret and bind. The remaining combinators (Figure 2) offer access to various computational effects,

including exceptions, crashes, divergence, state, structured parallelism, non-deterministic choice,

and delimited control.

Under the hood, computations are represented as trees, where leaves (Ret) represent results and
internal nodes (Stop) represent observable events, or system calls. This representation is inspired by

a long line of previous work on the free monad [Swierstra 2008, §6], the freer monad [Kiselyov and

Ishii 2015], and interaction trees [Xia et al. 2020]. Stop carries a continuation, a meta-level function.

One can think of this continuation as the computation that remains to be carried out once this

system call has produced a result. One can also think of it as a family of subtrees, indexed with

results. Because it is convenient to also have a variant of Stop that does not carry a continuation,

we write stop 𝑐 𝑣 for Stop 𝑐 𝑣 inject
2
, where inject

2
is the trivial continuation.

4 bind is defined as

a meta-level function on trees.

The constructor Stop carries a code, which can be viewed as the name of a system call, as well as

the argument of this system call. Although in previous work the type of codes is usually a parameter

of the monad, we work with a fixed type of codes, that is, with a specific set of system calls, which

provide support for just the effects that we need.

To express exceptions and crashes, we add two more kinds of leaves,Throw and Crash. To express
structured parallelism, we add a new constructor, Par , which carries two child computations and

a continuation. To express delimited control, we add another constructor, Handle, which carries

a computation and a handler.

In the remainder of this section, we briefly review the definition of the micro monad (§4.1) as

well as the specific system calls that we find necessary (§4.2). Once these definitions are given,

there still remains to assign a meaning, or a behavior, to each system call and to each of our ad hoc

constructors, such as Par and Handle. We do so via a small-step reduction relation (§5).

4.1 Definition
An inductive type of computations. Amathematical object of typemicro 𝐴 𝐸 represents an effectful

computation whose eventual outcome is either a result of type𝐴 or an exception of type 𝐸. The fact

that an outcome is a sum type is visible in the type of the fundamental combinator try
2
(Figure 2).

When two computations are sequentially composed, the second computation must be prepared to

accept the outcome of the first computation, whose type is the sum type outcome2 𝐴 𝐸.

The definition of the typemicro 𝐴 𝐸 appears in Figure 4. It is a variant of the freer monad: that is,

it is an inductive type, whose constructors include Ret and Stop. The three arguments carried by

Stop are a code (the name of the system call), an argument (the argument of the system call), and

a continuation (what to do once the system call produces an outcome). In Stop 𝑐 𝑣 𝑘 , the code 𝑐

4 inject
2
: outcome2 𝐴 𝐸 → micro 𝐴 𝐸 is defined by the equations inject

2
(Ret2 𝑣) = ret 𝑣 and inject

2
(Throw2 𝑣) = throw 𝑣.
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determines the types of the argument 𝑣 and of the outcome expected by the continuation 𝑘 . Indeed,

if 𝑐 has type code 𝑋 𝑌 𝐸′ then 𝑣 has type 𝑋 and 𝑘 expects the system call to produce either a result

of type 𝑌 or an exception of type 𝐸′.

Inert computations. Three constructors represent inert computations. Beyond Ret 𝑣 , whose

outcome is the result 𝑣 , we have Throw 𝑣 , a computation whose outcome is the exception 𝑣 , and

Crash, a computation that represents a fatal runtime failure. The combinators ret, throw, and crash
are synonyms for Ret,Throw, and Crash.

Sequential composition. The sequential composition combinator try
2
is not a constructor: instead,

it is defined by induction on its first argument. In try
2
𝑚𝑘 , the continuation 𝑘 expects an outcome,

that is, either a result or an exception. Crashes are propagated: try
2
(crash) 𝑘 is crash.

The sequential composition combinator bind is obtained as a special case of try
2
. In bind𝑚𝑘 ,

the continuation 𝑘 expects a result. The monadic laws are satisfied: in particular, bind (ret 𝑣) 𝑘 is

𝑘 𝑣 . Exceptions and crashes are propagated: bind (throw 𝑣) 𝑘 is throw 𝑣 and bind (crash) 𝑘 is crash.

Parallel composition. The constructor Par offers structured parallelism, that is, the ability to run

two computations in parallel and to wait for both of them to terminate. It carries two computations

and a continuation, which is meant to be invoked once both computations have produced a result.

The presence of this continuation is exploited in the definition of try
2
. Nevertheless, by thinking in

terms of the combinator par instead of the constructor Par , one can forget about this continuation.

Indeed, par𝑚1𝑚2 is defined as Par𝑚1𝑚2 inject2, where inject2 is the trivial continuation.4

Delimited control. The constructor Handle serves as a delimiter of control effects. It carries

a computation𝑚 and a handler ℎ: in short, the computation Handle 𝑚 ℎ is the computation𝑚

running under the handler ℎ. The combinator handle (Figure 2) is a synonym for Handle.
As indicated by the type of Handle in Figure 4, the handler ℎ is a three-armed continuation:

that is, it expects an outcome of type outcome3 _ _.

We require the computation𝑚 to have type micro val exn, that is, to produce an OCaml value

or an OCaml exception. Accordingly, the handler ℎ expects an outcome of type outcome3 val exn.
This convention guarantees that all continuations have the same type, therefore makes the heap

homogeneous. This is visible in the definition of a memory block (§5).

The definitions of the types outcome3 and micro are not mutually recursive. Indeed, outcome3
is defined first (Figure 2); micro refers to it (Figure 4). The key reason why this is possible is

that the second argument of the constructor Perform
3
is a stored continuation, that is, a memory

location ℓ . If instead it was a continuation (a function) then its codomain would be micro val exn,
so the types outcome3 and micro would be mutually recursive. Furthermore, because outcome3
appears in a negative position in the arguments of the constructor Handle (Figure 4), the definitions
of the types outcome3 and micro would be logically meaningless, and would be rejected by Rocq.

In summary, an indirection through the heap lets us avoid a logical difficulty.

4.2 System Calls
For our purposes, it is acceptable to fix the definition of the type code, that is, to adopt a fixed, finite
set of system calls. This definition appears in Figure 5. We now briefly review each system call,

describe its argument and result types, and explain its intended semantics.

Divergence. The system call CEval is a request to evaluate an OCaml expression. Its argument

is a pair of an environment 𝜂 and an expression 𝑒 . It returns a value or raises an exception.

The combinator please_eval (Figure 2) is defined by please_eval 𝜂 𝑒 = stop CEval (𝜂, 𝑒).

State. The system calls CAlloc, CLoad, and CStore allocate, read, and write heap cells.
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Inductive code : Type→ Type→ Type→ Type :=
| CEval : code (env × expr) val exn
| CAlloc : code val loc exn
| CLoad : code loc val exn
| CStore : code (loc × val) unit exn
| CPerf : code eff val exn
| CResume : code (loc × outcome2 val exn) val exn
| CWrap : code (loc × env × handler) loc exn

Fig. 5. The micro monad: codes, also known as system calls

Delimited control. The system call CPerf is a request to perform a delimited control effect. Its

argument is a value 𝑣 . Its intended meaning is the same as that of the OCaml expression perform v.

It can produce a value or an exception; this is determined when the continuation that is captured

by this system call is later continued or discontinued. The combinator perform (Figure 2) is defined

by perform 𝑣 = stop CPerf 𝑣 .
The system call CResume is a request to resume a continuation that has been previously captured

and stored in the heap by perform. Its argument is a pair of a memory location ℓ and an outcome 𝑜 .

Its intended effect is to fetch the continuation at address ℓ and to resume it by applying it to 𝑜 . If 𝑜 has

the form Ret2 𝑣 , then the continuation is continued; if 𝑜 has the formThrow2 𝑣 , then the continuation

is discontinued. The combinator resume (Figure 2) is defined by resume ℓ 𝑜 = stop CResume (ℓ, 𝑜).
The system call CWrap is a request to wrap a previously captured continuation in an effect

handler, yielding a new continuation. Its argument is a triple (𝜂, ℓ, bs), where bs is a handler, a list of
branches. (This type is part of our abstract syntax of OLang.) Its intended effect is to allocate a new

continuation which, once invoked, runs the existing continuation ℓ under the closed effect handler

(𝜂, bs). Its result is the address ℓ ′ of the new continuation. After this system call has returned, one

can view ℓ as uniquely owned by ℓ ′. The continuation ℓ must not be directly resumed; instead,

it should be indirectly resumed by resuming the continuation ℓ ′. The combinator wrap is defined

by wrap ℓ 𝜂 bs = stop CWrap (𝜂, ℓ, bs).

5 Small-step semantics for the Micro monad
We now equip micro monad with a small-step operational semantics. This gives meaning to system

calls (Stop) and to the monad’s ad hoc constructors (Par , Handle).
The reduction rules act on configurations𝑚 / 𝜎 , that is, pairs of a computation𝑚 and a heap 𝜎 .

A heap, or store, is a finite map of memory locations to memory blocks. The heap serves a dual

purpose: it stores mutable memory cells (also known as references) and first-class continuations.

Therefore, we define a memory block to be a value 𝑣 , a continuation 𝑘 , or the special mark E, which
denotes a continuation that has been “shot” already.

In the previous sentence, 𝑘 has type outcome2 val exn→ micro val exn. Thus, all continuations
have the same type. Furthermore, a continuation is represented as a meta-level function. This is

a natural consequence of the structure of the micro monad. The continuation that is carried by

the constructor Stop is a meta-level function. It is captured and stored in the heap when a control

effect is performed.

A reduction step takes the form𝑚 / 𝜎 −→𝑚′ / 𝜎 ′. The reduction relation is inductively defined

by the rules in Figure 6. We write ! as a short-hand for Stop.

Divergence. The first reduction rule states that the system call CEval with argument (𝜂, 𝑒) and
continuation 𝑘 reduces in one step to the computation eval 𝜂 𝑒 followed with 𝑘 . To better see this,

recall that try
2
is the sequential composition operation of the monad. In particular, if 𝑘 is the trivial
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Divergence
!CEval (𝜂, 𝑒) 𝑘 /𝜎 −→ try

2
(eval 𝜂 𝑒) 𝑘 /𝜎

State
!CAlloc 𝑣 𝑘 /𝜎 −→ try

2
(ret ℓ) 𝑘 / (ℓ, 𝑣) :: 𝜎 if ℓ ∉ dom(𝜎)

!CLoad ℓ 𝑘 /𝜎 −→ try
2
(ret 𝑣) 𝑘 /𝜎 if lookup 𝜎 ℓ = 𝑣

!CLoad ℓ 𝑘 /𝜎 −→ Crash /𝜎 otherwise

!CStore (ℓ, 𝑣 ′) 𝑘 /𝜎 −→ try
2
(ret ()) 𝑘 / (ℓ, 𝑣 ′) :: 𝜎 if lookup 𝜎 ℓ = 𝑣

!CStore (ℓ, 𝑣 ′) 𝑘 /𝜎 −→ Crash /𝜎 otherwise

Parallelism
Par𝑚1𝑚2 𝑘 /𝜎 −→ Par𝑚′

1
𝑚2 𝑘 /𝜎′ if𝑚1 / 𝜎 −→𝑚′

1
/ 𝜎′

Par𝑚1𝑚2 𝑘 /𝜎 −→ Par𝑚1𝑚
′
2
𝑘 /𝜎′ if𝑚2 / 𝜎 −→𝑚′

2
/ 𝜎′

Par (Ret 𝑣1) (Ret 𝑣2) 𝑘 /𝜎 −→ try
2
(ret (𝑣1, 𝑣2)) 𝑘 /𝜎

Par Crash𝑚2 𝑘 /𝜎 −→ Crash /𝜎
Par𝑚1 Crash𝑘 /𝜎 −→ Crash /𝜎

Par (Throw 𝑣)𝑚2 𝑘 /𝜎 −→ try
2
(throw 𝑣) 𝑘 /𝜎

Par𝑚1 (Throw 𝑣) 𝑘 /𝜎 −→ try
2
(throw 𝑣) 𝑘 /𝜎

Par (!CPerf 𝑣 𝑘)𝑚2 𝑘
′ /𝜎 −→ !CPerf 𝑣 (𝜆𝑜. Par (𝑘 𝑜)𝑚2 𝑘

′) /𝜎
Par𝑚1 (!CPerf 𝑣 𝑘) 𝑘′ /𝜎 −→ !CPerf 𝑣 (𝜆𝑜. Par𝑚1 (𝑘 𝑜) 𝑘′) /𝜎
Delimited control

Handle (Ret 𝑣) ℎ /𝜎 −→ ℎ (Ret3 𝑣) /𝜎
Handle (Throw 𝑣) ℎ /𝜎 −→ ℎ (Throw3 𝑣) /𝜎

Handle (!CPerf 𝑣 𝑘) ℎ /𝜎 −→ ℎ (Perform
3
𝑣 ℓ) / (ℓ, 𝑘) :: 𝜎 if ℓ ∉ dom(𝜎)

Handle Crash ℎ /𝜎 −→ Crash /𝜎
Handle 𝑚 ℎ /𝜎 −→ Handle 𝑚′ ℎ /𝜎′ if𝑚 / 𝜎 −→𝑚′ / 𝜎′

!CResume (ℓ, 𝑜) 𝑘 /𝜎 −→ try
2
(𝑘′ 𝑜) 𝑘 / (ℓ, E) :: 𝜎 if lookup 𝜎 ℓ = 𝑘′

!CResume (ℓ, 𝑜) 𝑘 /𝜎 −→ Crash /𝜎 otherwise

!CWrap (𝜂, ℓ, bs) 𝑘 /𝜎 −→ try
2
(ret ℓ′) 𝑘 / (ℓ′, 𝑘′) :: 𝜎 if ℓ′ ∉ dom(𝜎)

where 𝑘′ = 𝜆𝑜. handle (resume ℓ 𝑜) (wrap_eval_branches 𝜂 bs)

Fig. 6. The micro monad: small-step reduction

continuation inject
2
then this rule states that please_eval 𝜂 𝑒 reduces to eval 𝜂 𝑒 . In every reduction

rule where a continuation 𝑘 appears, it helps to read the rule in the special case where 𝑘 is inject
2
.

The general case, where 𝑘 is arbitrary, simply allows reduction under an evaluation context.

State. The system calls CAlloc, CLoad, and CStore implement the usual reduction semantics of

mutable references. CAlloc 𝑣 picks an unused memory location ℓ , initializes it with the value 𝑣 ,

and returns ℓ . It cannot fail. CLoad ℓ reads the value stored at location ℓ , if this location has been

allocated and stores a value; otherwise, it crashes. CStore (ℓ, 𝑣 ′) overwrites the value at location ℓ

with 𝑣 ′, if this location has been allocated and stores a value; otherwise, it crashes.

Parallelism. A parallel composition Par𝑚1𝑚2 𝑘 allows the computations𝑚1 and𝑚2 to run in

parallel. This is expressed by the first two rules in this group, which interleave the reduction steps

of𝑚1 and𝑚2 in a non-deterministic manner.

The next rule, specialized to to the trivial continuation, states that par (ret 𝑣1) (ret 𝑣2) reduces to
ret (𝑣1, 𝑣2). That is, if both𝑚1 and𝑚2 reach a result then par𝑚1𝑚2 returns a pair of these results.

This is fork/join parallelism: a parallel composition terminates once both sides have finished.

The remaining six rules in this group define the behavior of a parallel composition in the situation

where one side crashes, raises an exception, or performs a control effect.

A crash on either side is propagated: the parallel composition reduces to just Crash.
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An exception on either side is also propagated: for example, par (throw 𝑣)𝑚2 reduces to throw 𝑣 .

When a control effect !CPerf 𝑣 takes place under a parallel composition, the parallel composition

itself is captured, as it forms one frame of the evaluation context. In the term Par (!CPerf 𝑣 𝑘)𝑚2 𝑘
′
,

the continuation 𝑘 represents an evaluation context that has been captured already, and the parallel

composition Par (·)𝑚2 𝑘
′
forms one more frame, which has not yet been captured. This term

reduces to a new term where the control effect !CPerf 𝑣 appears at the root and where the captured
evaluation context 𝜆𝑜. Par (𝑘 𝑜)𝑚2 𝑘

′
is the composition of the original captured context 𝑘 with

this extra frame. This style of letting a control effect capture its evaluation context, one frame at

a time, in a small-step operational semantics, is standard [Pretnar 2015, Fig. 4]. What is unusual

and original here is that control effects and (non-deterministic) parallel composition interact.

Delimited control. The last group of rules in Figure 6 concerns Handle, which serves as a delimiter

of control effects, and the system calls CResume and CWrap, which operate on stored continuations.

In Handle 𝑚 ℎ, the computation𝑚 is monitored by the handler ℎ, a meta-level function whose

argument has type outcome3 val exn. The first three reduction rules describe the three kinds of

outcomes that the handler can observe. If the computation produces a result Ret 𝑣 then the handler

is applied to the outcome Ret3 𝑣 . If it produces an exception Throw 𝑣 then the handler is applied

to Throw3 𝑣 . If it performs an effect !CPerf 𝑣 𝑘 then the continuation 𝑘 is captured: 𝑘 is written

in the heap at a fresh address ℓ , and the handler is applied to Perform
3
𝑣 ℓ . Thus, the handler

receives access to the value 𝑣 and to the stored continuation ℓ .

The next two rules state that a crash under a handler reduces to a crash and that reduction under

Handle (·) ℎ is permitted.

The first reduction rule for CResume, when specialized to the trivial continuation, states that if

a continuation 𝑘 ′ is stored at address ℓ then resume ℓ 𝑜 / 𝜎 reduces to 𝑘 ′ 𝑜 / (ℓ, E) :: 𝜎 . In words,

resume ℓ 𝑜 resumes the continuation that is stored at address ℓ by applying it to the outcome 𝑜

and marks this continuation as shot. The next reduction rule states that attempting to resume

a continuation that has already been shot causes a crash. OCaml and OLang support one-shot

continuations only.

The last reduction rule, when specialized to the trivial continuation, states that wrap ℓ 𝜂 bs / 𝜎
reduces to ret ℓ ′ / (ℓ ′, 𝑘 ′) :: 𝜎 , where 𝑘 ′ can be described as the stored continuation ℓ , wrapped in

a copy of the closed handler (𝜂, bs).

Basic properties. By design of this semantics, the terms Par𝑚1𝑚2 𝑘 and Handle 𝑚 ℎ are never

stuck; that is, they are always reducible. The same is true of a system call ! 𝑐 𝑣 𝑘 except in the case

where 𝑐 is CPerf : indeed, a control effect cannot be reduced unless it occurs under Par or Handle.
In summary, there are four kinds of irreducible terms, namely ret 𝑣 , throw 𝑣 , crash, and !CPerf 𝑣 𝑘 .
The last form represents an unhandled effect.

Our reduction semantics is compatible with evaluation contexts: that is, 𝑚 / 𝜎 −→ 𝑚′ / 𝜎 ′
implies try

2
𝑚𝑘 / 𝜎 −→ try

2
𝑚′ 𝑘 / 𝜎 ′.

6 Validation
The semantics of OCaml is folklore: it is not formally documented anywhere. The reference manual

[Leroy et al. 2024] provides “precise syntax and informal semantics” and warns that “no attempt

has been made at mathematical rigor”. To validate (that is, to test) our formal semantics, we must

compare it with existing implementations of OCaml. Ideally, this comparison should be automated

and should involve a large number of test cases, including hand-written and randomly generated

test cases. We are not there yet; in this section, we provide a preliminary status report.

Our monadic interpreter of OLang (§3) is executable. Rocq’s Extraction command can produce

OCaml code for it. By combining this interpreter with an interpreter of micro computations (which
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we write, by hand, in OCaml) and by composing it with our translator of OCaml to OLang, we

obtain a stand-alone interpreter that is capable of executing self-contained OCaml programs.

In principle, this stand-alone interpreter allows comparing our semantics with pre-existing

implementations of OCaml. This said, the non-deterministic nature of the semantics of both OCaml

and OLang creates a significant difficulty: picking one execution path on each side (whose choice is

implementation-dependent and/or random) does not allow a meaningful comparison; exploring all

execution paths is impractical. At this time, we have only one source of non-determinism, namely

unspecified evaluation order (§2). Each existing implementation of OCaml uses a fixed deterministic

evaluation order, which can be experimentally determined. Therefore, a reasonable approach is to

manually define a deterministic variant of our semantics, which mimics this evaluation order, and

to compare these two deterministic systems. In the future, different sources of non-determinism,

namely concurrency and relaxed memory, will enter the picture. We plan to ensure that no test

case involves both unspecified evaluation order and concurrency. Then, repeated random testing

can be used to verify that the behaviors exhibited by the pre-existing implementation form a subset

of the behaviors permitted by our semantics.

As far as the construction of a test suite is concerned, a natural starting point is the test suite of

the OCaml compiler. This test suite is small; it contains fewer than 1700 test cases. Furthermore,

many tests use primitive operations that our semantics does not yet support. At this time, we have

manually implemented support for just a few input/output operations, and we have been able to run

a small number of tests in the compiler’s test suite. Furthermore, we have hand-written a number

of additional tests. In total, our tests currently represent 29 files and about 900 lines of code. In

the future, significant work is required to deal with non-determinism and to implement support

for a large set of primitive operations, support for foreign function calls, and random generation

and shrinking of test cases. We plan to take inspiration from previous projects that involve testing

a compiler or a formal semantics in the presence of undefined behavior and/or non-determinism

[Owens 2008; Livinskii et al. 2020; Wang and Jung 2024; Beck et al. 2025].

7 Horus
We say that a computation is “pure” if it does not involve divergence, state, or delimited control.

Pure computations are commonplace in OCaml. It is possible to reason about their behavior using

a stateless program logic, which is significantly simpler than a Separation Logic. Therefore, in this

section, we present Horus, a total program logic for pure program fragments.

Making Horus a total logic, where divergence is forbidden, is a design choice. We could have

made it a partial logic, where divergence is allowed. This would remove the obligation of proving

that every recursive function definition is well-founded. Requiring the user to prove termination

has a cost (more work for the user) and a benefit (a stronger guarantee about the code). We believe

that the benefit often outweighs the cost. If a user cannot prove or does not wish to prove that

a piece of “pure” code terminates, then they will have to use Osiris (§8) instead of Horus; but we

believe that this should be fairly rare.

7.1 Pure Reduction
To clarify what we mean by “pure” computation, we introduce a pure reduction relation,𝑚 −→p 𝑚

′
.

In this paper, its definition is omitted. It is identical to the relation −→ (§5), with two differences.

First, it relates computations (𝑚) rather than configurations (𝑚 / 𝜎): thus, it does not involve the
heap. Second, in this relation, a system call that needs access to the heap (CAlloc, CLoad, CStore,
CPerf , CResume, CWrap) reduces to Crash. This reduction relation is not terminating, deterministic

or confluent; these properties are not needed. The constructs Par and Handle are supported, and
behave normally, if their children are pure.
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pure-ret

𝜑 𝑎

pure (ret 𝑎) 𝜑 𝜓

pure-throw

𝜓 𝑣

pure (throw 𝑣) 𝜑 𝜓

pure-bind

pure 𝑚 (𝜆𝑎. pure (𝑘 𝑎) 𝜑 𝜓 ) 𝜓
pure (bind𝑚𝑘) 𝜑 𝜓

pure-please-eval

pure (eval 𝜂 𝑒) 𝜑 𝜓

pure (please_eval 𝜂 𝑒) 𝜑 𝜓

pure-conseq

pure 𝑚 𝜑 𝜓

∀𝑎. 𝜑 𝑎 ⇒ 𝜑 ′ 𝑎
∀𝑣 . 𝜓 𝑣 ⇒ 𝜓 ′ 𝑣

pure 𝑚 𝜑′ 𝜓 ′

pure-try2

pure 𝑚 (𝜆𝑎. pure (𝑘 (Ret2 𝑎)) 𝜑 𝜓 )
(𝜆𝑣. pure (𝑘 (Throw2 𝑣)) 𝜑 𝜓 )
pure (try

2
𝑚𝑘) 𝜑 𝜓

pure-par

pure 𝑚1 𝜑1 𝜓 pure 𝑚2 𝜑2 𝜓

∀𝑎1𝑎2 . 𝜑1 𝑎1 ∧ 𝜑2 𝑎2 ⇒ 𝜑 (𝑎1, 𝑎2)
pure (par𝑚1𝑚2) 𝜑 𝜓

pure-handle

pure 𝑚 (𝜆𝑎. pure (ℎ (Ret3 𝑎)) 𝜑 𝜓 ) (𝜆𝑣 . pure (ℎ (Throw3 𝑣)) 𝜑 𝜓 )
pure (handle𝑚ℎ) 𝜑 𝜓

pure-intersection

∀𝑎 : 𝐴. pure 𝑚 (𝜑 𝑎) 𝜓
pure 𝑚 (𝜆𝑣.∀𝑎 : 𝐴. 𝜑 𝑎 𝑣) 𝜓

Fig. 7. Horus rules for micro computations (pure)

The pure reduction relation serves as a foundation for the lower layer of Horus, a stateless Hoare

logic for pure micro computations (§7.2). This layer involves a single judgment, pure. On top of it,

we construct the upper layer of Horus, a stateless Hoare logic for OCaml programs (§7.3). This layer

involves several judgments: there is one judgment per syntactic category, including expressions,

patterns, and so on. Furthermore, we introduce a specific judgment for function specifications (§7.4).

7.2 Micro Layer
The pure judgment, pure 𝑚 𝜑 𝜓 , states that𝑚 : micro 𝐴 𝐸 is a pure and terminating computation

that must either return a value that satisfies the normal postcondition 𝜑 : 𝐴 → Prop or raise

an exception that satisfies the exceptional postcondition𝜓 : 𝐸 → Prop. It is inductively defined in

terms of the pure reduction relation via the following three rules, which can be read as follows:

either the computation is finished and the corresponding postcondition holds; or the computation

is able to make a step and, after every possible step, pure holds again.

𝜑 𝑎

pure (ret 𝑎) 𝜑 𝜓

𝜓 𝑣

pure (throw 𝑣) 𝜑 𝜓

∃𝑚′ . 𝑚 −→p 𝑚
′ ∀𝑚′ . 𝑚 −→p 𝑚

′ ⇒ pure 𝑚′ 𝜑 𝜓

pure 𝑚 𝜑 𝜓

The soundness of Horus with respect to the semantics (§5) is an immediate consequence of this

definition: if pure 𝑚 𝜑 ⊥ holds then executing𝑚 in an arbitrary heap 𝜎 cannot diverge, cannot

crash, and cannot result in an unhandled exception or effect; it must reach a result ret 𝑎 such that

𝜑 𝑎 holds and leave the heap 𝜎 unchanged.

With respect to this definition, we establish the validity of a number of reasoning rules (Figure 7).

There is one rule for each combinator of the micro monad (Figure 2), excluding those that cannot

be used in a pure computation. For example, pure-bind can be read as follows: to establish that

the sequence bind𝑚𝑘 is pure and satisfies the postconditions 𝜑 and 𝜓 , one must prove that

(1)𝑚 is pure, (2) if𝑚 produces a normal result 𝑎 then 𝑘 𝑎 is pure and satisfies 𝜑 and 𝜓 , (3) if𝑚

produces an exceptional result then this result satisfies𝜓 .

pure-handle is useful even in a pure setting (where delimited control effects cannot be used)

because we use handle to interpret all match constructs. pure-conseq is the consequence rule. pure-

intersection is the intersection rule. There, 𝑋 is a non-empty type. This rule pushes a universal

quantification into the postcondition. All of the rules in Figure 7 are reversible. For example, out of

a judgment about par𝑚1𝑚2, one can extract judgments about𝑚1 and𝑚2.
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EInt

𝜑 𝑖

expr 𝜂 (EInt 𝑖) 𝜑 𝜓

EAdd

expr 𝜂 𝑒1 𝜑1 𝜓 expr 𝜂 𝑒2 𝜑2 𝜓

∀𝑖1 𝑖2 . 𝜑1 𝑖1 ⇒ 𝜑2 𝑖2 ⇒ 𝜑 (𝑖1 + 𝑖2)
expr 𝜂 (EAdd 𝑒1 𝑒2) 𝜑 𝜓

EIf

expr 𝜂 𝑒 (𝜆𝑏. expr 𝜂 (if 𝑏 then 𝑒1 else 𝑒2) 𝜑 𝜓 ) 𝜓
expr 𝜂 (EIfThenElse 𝑒 𝑒1 𝑒2) 𝜑 𝜓

ERaise

expr 𝜂 𝑒 𝜓 𝜓

expr 𝜂 (ERaise 𝑒) 𝜑 𝜓

ESeq

expr 𝜂 𝑒1 (𝜆_. expr 𝜂 𝑒2 𝜑 𝜓 ) 𝜓
expr 𝜂 (ESeq 𝑒1 𝑒2) 𝜑 𝜓

ELet

bindings 𝜂 bs (𝜆𝛿. expr (𝛿 ++ 𝜂) 𝑒 𝜑 𝜓 ) 𝜓
expr 𝜂 (ELet bs 𝑒) 𝜑 𝜓

EMatch

expr 𝜂 𝑒 (𝜆𝑎. branches 𝜂 (Ret3 #𝑎) bs 𝜑 𝜓 )
(𝜆𝑣 . branches 𝜂 (Throw3 𝑣) bs 𝜑 𝜓 )
expr 𝜂 (EMatch 𝑒 bs) 𝜑 𝜓

BranchesCons

cpat 𝜂 𝜂 cp 𝑜 (𝜆𝜂′ . expr 𝜂′ 𝑒 𝜑 𝜓 ) 𝜁
𝜁 ⇒ branches 𝜂 𝑜 bs 𝜑 𝜓

branches 𝜂 𝑜 (Branch cp 𝑒 :: bs) 𝜑 𝜓

BranchesNil

𝑜 = Throw3 𝑣 𝜓 𝑣

branches 𝜂 𝑜 [] 𝜑 𝜓

Fig. 8. Selected Horus rules for OLang expressions (expr) and case analyses (branches)

The pure judgment satisfies a few additional deduction rules. For example, out of a postcondition,

one can extract information: that is, pure 𝑚 𝜑 𝜓 implies (∃𝑎. 𝜑 𝑎) ∨ (∃𝑒. 𝜓 𝑒). Furthermore, the

following two rules are valid, where ⊥ stands for 𝜆_. False:

pure 𝑚1 (𝜆𝑎1. pure 𝑚2 (𝜆𝑎2 . 𝜑1 𝑎1 ∧ 𝜑2 𝑎2) ⊥) ⊥
pure 𝑚1 𝜑1 ⊥ ∧ pure 𝑚2 𝜑2 ⊥

pure 𝑚1 (𝜆𝑎1. pure 𝑚2 (𝜆𝑎2 . 𝜑 𝑎1 𝑎2) 𝜓 ) ⊥
pure 𝑚2 (𝜆𝑎2. pure 𝑚1 (𝜆𝑎1 . 𝜑 𝑎1 𝑎2) ⊥) 𝜓

These rules help sequentialize subgoals. This can be convenient when reasoning about expressions

with multiple subexpressions. For example, this can help avoid the creation of Rocq metavariables.

7.3 OLang Layer
Although OLang is an untyped language, we give a typed view of its values in Horus. That is, instead

of working with postconditions whose argument type is val, we want the user of the logic to write

postconditions in Rocq with an argument type of their choosing, such as unit, int, bool, etc. For this
purpose, we define a type class Encode 𝐴 whose single method is encode : 𝐴→ val. We write # as a

short-hand for encode. It is a mapping of mathematical objects of type 𝐴 into OLang values. It need

not be injective. We define several commonly useful instances of this class. For example, the Rocq

types Z and unit are instances of this class: #5 is VInt (int .repr 5), and #() is VUnit. This allows
us to hide the tags VInt and VUnit from the user’s view. In fact, we want the user to be entirely

unaware of the manner in which typed OLang values are encoded as inhabitants of the type val,
and to view val as an abstract type.

Reflecting this discussion, we define a judgment pure
#
that takes an implicit parameter of

type Encode 𝐴 and where the postcondition 𝜑 has type 𝐴→ Prop. Then, based on pure
#
and eval,

we define a judgment expr for pure OLang expressions, as well as similar judgments (not shown)

for each of OLang’s syntactic categories.

pure
#
𝑚 𝜑 𝜓 := pure 𝑚 (𝜆𝑣. ∃𝑎. 𝑣 = #𝑎 ∧ 𝜑 𝑎) 𝜓

expr 𝜂 𝑒 𝜑 𝜓 := pure
#
(eval_expr 𝜂 𝑒) 𝜑 𝜓

With respect to this definition of expr , we establish the validity of a number of reasoning rules,

some of which are shown in Figure 8. In every expr judgment, the domain of the postcondition is

implicit: for example, in EAdd, the postconditions 𝜑1 and 𝜑2 have argument type Z; the variables 𝑖1
and 𝑖2 have type Z as well, as they are operands of +. Our reasoning rules for integer addition,
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subtraction, negation, and multiplication do not require the user to prove the absence of integer
overflow.

5
Our reasoning rules for division and comparison do have such a requirement.

The sequential composition rule ESeq ignores the value produced by 𝑒1. The more general

sequential composition construct ELet bs 𝑒 can bind any number of variables, so ELet is more

complex; it relies on the auxiliary judgment bindings (not shown) to extend the environment with

new bindings. It is instructive to examine two special cases of ELet, shown below, where the list bs
contains only one binding. In ELet1Var a variable 𝑥 is bound to the result of a subexpression 𝑒1.

In ELet1Pat a pattern 𝑝 is used to deconstruct the result of 𝑒1.

ELet1Var

expr 𝜂 𝑒1 (𝜆𝑎. expr ((𝑥, #𝑎) :: 𝜂) 𝑒2 𝜑 𝜓 ) 𝜓
expr 𝜂 (ELet [Binding (PVar 𝑥) 𝑒1] 𝑒2) 𝜑 𝜓

ELet1Pat

expr 𝜂 𝑒1 (𝜆𝑎. pat 𝜂 𝜂 𝑝 #𝑎 (𝜆𝜂′ . expr 𝜂′ 𝑒2 𝜑 𝜓 ) ⊥) 𝜓
expr 𝜂 (ELet [Binding 𝑝 𝑒1] 𝑒2) 𝜑 𝜓

In ELet1Var, 𝑒2 is examined under the environment (𝑥, #𝑎) :: 𝜂, which extends 𝜂 with a binding of

the variable 𝑥 to the value #𝑎 returned by 𝑒1. In ELet1Pat, 𝑒2 is examined under an environment 𝜂′

that is obtained as the result of matching the value #𝑎 against the pattern 𝑝 in environment 𝜂. This

is expressed by the judgment pat, a Hoare-style judgment about pattern matching, which we define

in terms of pure and eval_pat, as follows:

pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 := pure (eval_pat 𝜂 𝛿 𝑝 𝑣) 𝜑 (𝜆(). 𝜁 )
The judgment pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 states that, starting with lookup-only environment 𝜂 and extend-

only environment 𝛿 , matching the value 𝑣 against the pattern 𝑝 cannot crash, must terminate, and

either produces an environment that satisfies 𝜑 or fails by throwing (), in which case 𝜁 holds. The

function eval_pat (not shown) is part of our monadic interpreter. In short, eval_pat 𝜂 𝛿 𝑝 𝑣 matches

the value 𝑣 against the pattern 𝑝 . In case of success, the result is an extension of the environment

(or fragment) 𝛿 with bindings for the bound variables of the pattern 𝑝 . The environment 𝜂 is used

to look up data constructors of extensible algebraic data types.

In the premise of ELet1Pat, the use of ⊥ as an exceptional postcondition of the pat judgment

indicates that pattern matching is not allowed to fail; it must be exhaustive.

With respect to this definition of pat, we establish the validity of a number of reasoning rules

(not shown). These rules support deeply nested patterns. An end user need not be aware of these

rules: since the pattern is always statically known, our tactics are able to automatically apply these

rules in such a way that the remaining subgoal is an expr judgment, requesting the user to verify

a branch, under the assumption that this branch has been entered, and that the previous branches

could not be entered.

Coming back to Figure 8, the rule EMatch deals with the OCaml expression “match e with bs”

where each branch in the list bs is composed of a computation pattern cp (§3.9) and a body 𝑒 . In

order to reason about these syntactic categories (namely, branches and computation patterns),

we define two Hoare-style judgments:

branches 𝜂 𝑜 bs 𝜑 𝜓 := pure
#
(eval_branches 𝜂 𝑜 bs) 𝜑 𝜓

cpat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 := pure (eval_cpat 𝜂 𝛿 cp 𝑣) 𝜑 (𝜆(). 𝜁 )
EMatch states that one must first reason about the scrutinee (that is, the expression 𝑒), which

produces either a normal result #𝑎 or an exceptional result 𝑣 ; then, one reasons about the application

of the handler bs to this outcome via the judgment branches.

5
How is this possible? Recall (§3.4) that the type int of machine integers is the semi-open interval [−𝑛,𝑛) , where 𝑛 is

2
𝑤−1

. The function int .repr is the projection of Z into int. This function is idempotent and commutes with addition, so

int .repr (int .repr (𝑥 ) + int .repr (𝑦) ) is int .repr (𝑥 + 𝑦) , where 𝑥 and 𝑦 have type Z. In other words, the result of adding

the values #𝑥 and #𝑦 is always the value #(𝑥 + 𝑦) , even if overflow, perhaps better described as wraparound, takes place.
The same is true for negation, subtraction, and multiplication.
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The rules BranchesCons and BranchesNil allow reasoning about each branch in turn. In the

second premise of BranchesCons, the implication 𝜁 ⇒ · · · allows each branch to be verified

under the assumption that the previous branches did not match. When bs is the empty list and 𝑜 is

a normal outcome (Ret3 𝑣), this premise must be proved by contradiction: the user must check that

𝜁 contains a contradiction. When bs is the empty list and 𝑜 is an exceptional outcome (Throw3 𝑣),

it can be proved by applying BranchesNil.

An end user normally does not encounter the judgments branches or cpat: indeed, we provide
tactics that automatically apply BranchesCons, compute exceptional postconditions, and attempt

to extract contradictions out of them, so the only remaining subgoals are expr judgments.

7.4 Function Specifications
To a merge function on sorted lists of integers, we wish to give a specification of this form:

Pmerge := 𝜆 l1 l2 𝑚. sorted l1 ∧ sorted l2 ⇒ pure
#
𝑚 (𝜆l. sorted l ∧ permutation l (l1 ++ l2)) ⊥

Here, l1 and l2 are two Rocq lists, whose type is list Z. The variable𝑚, whose type is micro val exn,
serves as an abstract placeholder for the function application. This specification requires the lists l1
and l2 to be sorted (a precondition) and guarantees that the function call produces a sorted list l
that is a permutation of l1 ++ l2 (a postcondition).
OLang’s functions are unary (§3.6), so, by “𝑛-ary function”, we mean 𝑛 nested 𝜆-abstractions.

Indeed, in OCaml, this “curried” style is the most popular style, as opposed to the “uncurried” style

where an 𝑛-ary function expects an 𝑛-tuple as an argument.

To reason about curried 𝑛-ary functions and give them specifications that take the natural

form shown above, we introduce the proposition Spec ®𝜏 𝑐 P , which means “𝑐 is a function with

domain ®𝜏 and specification P .” In this proposition, ®𝜏 is a non-empty list of the Rocq types of the

function’s parameters (these types must be instances of Encode), 𝑐 is a value (which represents

the function—𝑐 is for “closure”), and P describes the behavior of the function. The specification

itself has type P : ®𝜏 → micro val exn→ Prop. Its parameters are the function’s parameters and

a monadic computation, which represents an application of the function to its actual arguments.

This style of specification is inspired by Moine et al. [2023], who use a similar style in a partial

correctness setting. Internally, we define Spec ®𝜏 𝑐 P by induction on the list ®𝜏 , as follows:
∀(𝑎 : 𝐴). P 𝑎 (call 𝑐 #𝑎)

Spec [𝐴] 𝑐 P
∀(𝑎 : 𝐴). pure

#
(call 𝑐 #𝑎) (𝜆𝑐′ . Spec ®𝜏 𝑐′ (P 𝑎)) ⊥
Spec (𝐴 :: ®𝜏) 𝑐 P

In the base case (left), the function has one parameter of type 𝐴. In this case, for every argument

𝑎 : 𝐴, the function call call 𝑐 #𝑎 must satisfy the specification P 𝑎. (call was introduced in §3.6.)

In the inductive case (right), the first parameter has type 𝐴, and there are more parameters. In that

case, the function call call 𝑐 #𝑎 must return a closure 𝑐′ which itself satisfies Spec ®𝜏 𝑐′ (P 𝑎).
The rules in Figure 9 form the public API of the abstract predicate Spec. (Spec also enjoys a conse-

quence rule, which we omit.) Spec-EAnonFun lets one prove that the expression EAnonFun (· · · ),
an 𝑛-ary function, produces a value 𝑐 (a closure) that satisfies the specification P . We write

AnonFun ®𝑥 𝑒 as a short-hand for a series of nested 𝜆-abstractions. The rule’s single premise

requires the user to prove that the function’s body 𝑒 abides by the specification P . This proof is
carried out under an environment where each formal parameter 𝑥 ∈ ®𝑥 is bound to the corresponding

actual parameter #𝑎 ∈ #®𝑎. This takes place under a universal quantification over ®𝑎, as the actual
parameters are unknown.

Spec-ELetRec governs the definition of one recursive function with an arbitrary number of

formal parameters ®𝑥 . Its first premise requires the user to exhibit a well-founded relation 𝑅, which

applies to all parameters at once and has type 𝑅 : ®𝜏 → ®𝜏 → Prop. Its second premise requires
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Spec-EAnonFun

∀(®𝑎 : ®𝜏). P ®𝑎 (eval (( ®𝑥, #®𝑎) :: 𝜂) 𝑒)
expr 𝜂 (EAnonFun (AnonFun ®𝑥 𝑒))

(𝜆𝑐. Spec ®𝜏 𝑐 P) 𝜓

Spec-EApp

expr 𝜂 𝑒 (𝜆𝑐. Spec ®𝜏 𝑐 P) 𝜓
expr 𝜂 𝑒1 𝜑1 𝜓 · · · expr 𝜂 𝑒𝑛 𝜑𝑛 𝜓

∀®𝑎. 𝜑1 𝑎1 ⇒ · · · ⇒ 𝜑𝑛 𝑎𝑛 ⇒ ∀𝑚. P ®𝑎 𝑚 ⇒ pure
#
𝑚 𝜑 𝜓

expr 𝜂 (EApp 𝑒 𝑒1 · · · 𝑒𝑛) 𝜑 𝜓

Spec-ELetRec

wf 𝑅

∀𝑐 ®𝑎. Spec ®𝜏 𝑐 (𝜆®𝑎′𝑚. 𝑅 ®𝑎′ ®𝑎 ⇒ P ®𝑎′ 𝑚) ⇒ P ®𝑎 (eval (( ®𝑥, #®𝑎) :: (𝑓 , 𝑐) :: 𝜂) 𝑒𝑓 )
∀𝑐. Spec ®𝜏 𝑐 P ⇒ expr ((𝑓 , 𝑐) :: 𝜂) 𝑒 𝜑 𝜓

expr 𝜂 (ELetRec [RecBinding 𝑓 (AnonFun ®𝑥 𝑒𝑓 )] 𝑒) 𝜑 𝜓

Fig. 9. Selected Horus rules for OLang expressions (expr): 𝑛-ary function calls and function definitions

the user to prove that the function body 𝑒𝑓 satisfies a specification P , under the assumption that

recursive calls (with strictly smaller arguments) obey the specification P . The third premise allows

the user to assume that the function (represented by the closure 𝑐) satisfies P while verifying the

right-hand side of the let rec construct.

Spec-EApp allows reasoning about 𝑛 nested function applications as a single 𝑛-ary application.

The first premise asks that the function 𝑒 satisfy an 𝑛-ary specification P . The following 𝑛 premises

require the subexpressions 𝑒𝑖 to be verified. In the last premise, their results are named 𝑎𝑖 . There,

the user must prove ∀𝑚. P ®𝑎 𝑚 ⇒ pure
#
𝑚 𝜑 𝜓 . To better understand this proof obligation,

consider how it is instantiated at a call site of merge. Then, P is Pmerge , and the list ®𝑥 consists of the

variables l1 and l2. The proof obligation takes the form:

∀𝑚. Pmerge l1 l2 𝑚 ⇒ pure
#
𝑚 𝜑 𝜓

where l1 and l2 represent the actual arguments at this call site. Unfolding the definition of Pmerge
reveals a judgment “pure

#
𝑚 . . . ” on the left-hand side of the implication. Thus, after proving that

the precondition sorted l1 ∧ sorted l2 holds, one can apply pure-conseq to eliminate the judgments

“pure
#
𝑚 . . . ” on both sides of the implication. This yields a goal of the form:

∀l. sorted l ∧ permutation l (l1 ++ l2) ⇒ 𝜑 l

In this goal, the variable l stands for the result of the function call. The user is allowed to assume

that the postcondition of merge holds: that is, the list l is sorted and is a permutation of l1 ++ l2.
She must then prove that the property that is eventually desired, 𝜑 l, follows from these facts.

8 Osiris
Wenow present Osiris, a Separation Logic for OLang. Osiris allows reasoning about OLang programs

that exhibit all kinds of effects (§3), including divergence, state, and control effects, which Horus

forbids. Osiris is based on Iris [Jung et al. 2018b] and borrows ideas from Hazel [de Vilhena and

Pottier 2021], a variant of Iris that supports effect handlers.

8.1 Micro Layer
The lower layer of Osiris is a Separation Logic for monadic computations in the micro monad.

Its main judgment, ⟨Ψ⟩ impure 𝑚 𝜑 𝜓 , means that the computation𝑚 : micro 𝐴 𝐸 cannot crash

and that if it terminates then it must produce either a normal result that satisfies 𝜑 : 𝐴→ iProp or

an exceptional result that satisfies𝜓 : 𝐸 → iProp. (iProp is the type of Iris assertions.) Furthermore,
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impure-ret

𝜑 𝑎

⟨Ψ⟩ impure (ret 𝑎) 𝜑 𝜓

impure-throw

𝜓 𝑒

⟨Ψ⟩ impure (throw 𝑒) 𝜑 𝜓

impure-bind

⟨Ψ⟩ impure 𝑚 (𝜆𝑎. ⟨Ψ⟩ impure 𝑘 𝑎 𝜑 𝜓 ) 𝜓
⟨Ψ⟩ impure (bind𝑚𝑘) 𝜑 𝜓

impure-conseq

⟨Ψ⟩ impure 𝑚 𝜑 𝜓

∀𝑎. 𝜑 𝑎 −∗ 𝜑 ′ 𝑎
∀𝑒. 𝜓 𝑒 −∗ 𝜓 ′ 𝑒

⟨Ψ⟩ impure 𝑚 𝜑′ 𝜓 ′

impure-par

⟨Ψ⟩ impure 𝑚1 𝜑1 𝜓

⟨Ψ⟩ impure 𝑚2 𝜑2 𝜓

∀𝑎1𝑎2 . 𝜑1 𝑎1 −∗ 𝜑2 𝑎2 −∗ 𝜑 (𝑎1, 𝑎2)
⟨Ψ⟩ impure (par𝑚1𝑚2) 𝜑 𝜓

impure-handle

⟨Ψ⟩ impure 𝑚 𝜑 𝜓

shallow -handler ⟨Ψ⟩ {𝜑 | 𝜓 } ℎ ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′}
⟨Ψ′⟩ impure (handle𝑚ℎ) 𝜑 ′ 𝜓 ′

impure-perform

Ψ allows perform 𝑣 {𝜑 | 𝜓 }
⟨Ψ⟩ impure (perform 𝑣) 𝜑 𝜓

impure-resume

isCont ℓ 𝑘 ⊲ ⟨Ψ⟩ impure (𝑘 𝑜) 𝜑 𝜓

⟨Ψ⟩ impure (resume ℓ 𝑜) 𝜑 𝜓

Fig. 10. Selected Osiris rules for micro computations (impure)

along the way, this computation may perform a sequence of zero, one or more control effects in

accordance with the protocol Ψ : eff → (outcome2 val exn→ iProp) → iProp.
A protocol [de Vilhena and Pottier 2021] describes the effects that a computation may perform

and the responses that the enclosing effect handlers may provide. Our definition of protocols is

the same as de Vilhena and Pottier’s, except that we change the type of a response from val to
outcome2 val exn, because, by continuing or discontinuing a continuation, a handler can respond

with a normal result or with an exceptional result. If 𝑋 → iProp is read informally as “a set

of 𝑋 ’s” then the type of protocols can be understood as “a set of pairs of an effect and a set of

responses”. Thus, a protocol describes which effects are permitted, and for each permitted effect,

which responses are permitted.

Following de Vilhena and Pottier [2021], we write Ψ allows perform 𝑣 {𝜑 | 𝜓 } to mean that the

protocol Ψ allows the request 𝑣 and guarantees that the response will satisfy the postconditions 𝜑

and𝜓 .

A selection of the deduction rules for the judgment impure appears in Figure 10. In each rule,

the premises are separated, and the horizontal bar is a magic wand. These rules are not meant to be

surprising in any way: they are essentially a paraphrase of our small-step reduction rules (Figure 6)

in the style of an Iris-based Separation Logic. The “later” modality ⊲ that appears in the premise

of the rules reflects the fact that one step of reduction is made; this is standard in Iris [Jung et al.

2018b, §6.2].

The rules impure-ret, impure-throw, impure-bind, and impure-par are analogous to pure-ret,

pure-throw, pure-bind, and pure-par. The rule impure-par is in fact the parallel composition

rule of Separation Logic [O’Hearn 2007]. Therefore, to verify a parallel composition, one must split

the current resource and separately verify each side.

The consequence rule, impure-conseq, is also known as the frame rule. A reader who is not

familiar with this formulation is referred to the rule wp-mono in Iris [Jung et al. 2018b, §6.2].

The absence of a persistence modality in the second and third premises of impure-conseq makes it

a true frame rule, and reflects the fact that a computation terminates at most once—which is true in

our setting because there are no multi-shot continuations.

impure-perform states that performing an effect 𝑣 , and expecting its outcome to satisfy the

postconditions 𝜑 and 𝜓 , is permitted if and only if the protocol says so. impure-resume and an

analogous rule for wrap (omitted) paraphrase the reduction rules for resume and wrap in Figure 6,

but use the abstract predicate isCont to hide the fact that a continuation is a heap-allocated object.
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impure-EPerform

⟨Ψ⟩ expr 𝜂 𝑒 𝜑′ 𝜓
∀𝑣 . 𝜑′ (𝑣) −∗ Ψ allows perform 𝑣 {𝜑 | 𝜓 }

⟨Ψ⟩ expr 𝜂 (EPerform 𝑒) 𝜑 𝜓

impure-EContinue

⟨Ψ⟩ expr 𝜂 𝑒1 𝜑1 𝜓 ⟨Ψ⟩ expr 𝜂 𝑒2 𝜑2 𝜓

∀ℓ, 𝑣 . 𝜑1 (ℓ) −∗ 𝜑2 (𝑣) −∗
∃𝑘. isCont ℓ 𝑘 ∗ ⊲ ⟨Ψ⟩ impure (𝑘 (Ret2 𝑣)) 𝜑 𝜓

⟨Ψ⟩ expr 𝜂 (EContinue 𝑒1 𝑒2) 𝜑 𝜓

impure-EMatch

⟨Ψ⟩ expr 𝜂 𝑒 𝜑 𝜓 olang -deep-handler 𝜂 ⟨Ψ⟩ {𝜑 | 𝜓 } bs ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′}
⟨Ψ′⟩ expr 𝜂 (EMatch 𝑒 bs) 𝜑 ′ 𝜓 ′

Fig. 11. Selected Osiris rules for OLang expressions (expr)

impure-handle reflects the fact that installing a handler via handle changes the description of

a computation from Ψ, 𝜑,𝜓 to Ψ′, 𝜑 ′,𝜓 ′. It is modeled after Hazel’s shallow-handler rule [de Vilhena

and Pottier 2021, Figure 6] so we do not explain it here. The name and definition of this judgment

reflect the fact that handle installs a shallow handler, which handles at most one effect, then vanishes.

8.2 OLang Layer
As we did in Horus (§7.3), in order to let the user entertain a typed view of values, we introduce

an auxiliary judgment impure
#
that takes an implicit parameter of type Encode 𝐴 and where the

postcondition 𝜑 has type 𝐴→ iProp. Then, we define a judgment expr about OLang expressions.

⟨Ψ⟩ impure
#
𝑚 𝜑 𝜓 := ⟨Ψ⟩ impure 𝑚 (𝜆𝑣. ∃𝑎. ⌜𝑣 = #𝑎⌝ ∗ 𝜑 𝑎) 𝜓

⟨Ψ⟩ expr 𝜂 𝑒 𝜑 𝜓 := ⟨Ψ⟩ impure
#
(eval_expr 𝜂 𝑒) 𝜑 𝜓

In this paper, the Horus judgment expr and the Osiris judgment expr are visually distinguished

by the fact that the latter begins with an extra parameter ⟨Ψ⟩.
Some deduction rules for the Osiris judgment expr appear in Figure 11. The three rules shown

correspond to the OCaml expressions “perform e”, “continue e1 e2”, and “match e with bs”. The

impure-EContinue rule manages resuming a continuation with a value. If 𝑒1 produces a stored con-

tinuation ℓ and 𝑒2 produces a value 𝑣 then this rules requires that it be safe to resume ℓ with Ret2 𝑣 .
impure-EMatch relies on the auxiliary judgment olang-deep-handler to express the fact that the

closed handler (𝜂, bs) changes the description of the program’s behavior from Ψ, 𝜑,𝜓 to Ψ′, 𝜑 ′,𝜓 ′.
The definition of this judgment (not shown) is obtained by composing de Vilhena and Pottier’s

deep-handler judgment [2021] with our function eval_branches (§3.9), which transforms the syntac-

tic handler (𝜂, bs) into a semantic handler (a function of a three-armed outcome to a computation).

8.3 Interaction Between the Two Logics
Sometimes, somewhere in the middle of an Osiris proof, the user faces a pure fragment of the

program that they wish to verify. Then, they can “drop down” from Osiris to Horus. Consider this

definition of find_first, which uses a local exception to cause an early return out of List.iter:

1 let find_first (type a) l pred =

2 let open struct type exn += Found of a end in

3 let scan x = if pred x then raise (Found x) in

4 match List.iter scan l with

5 | () -> None

6 | exception Found x -> Some x
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The instruction “type exn += Found of a” (which, technically, is a structure item) dynamically

adds a new constructor to the extensible algebraic data type exn. In our semantics, executing this

instruction allocates a fresh memory location ℓ and binds the name Found to this memory location.

Because this instruction extends the store, it is not pure. Therefore, find_first cannot be verified
using Horus alone. The specification of find_first must be expressed at the level of Osiris, and its

verification must begin at this level. Nevertheless, once the focus of the proof moves past this

instruction and reaches the beginning of line 3, the remaining code is pure. Thus, at this point, the

user can exploit the following rule to drop down from Osiris to Horus:

impure-pure

pure 𝑚 𝜑 𝜓

⟨Ψ⟩ impure 𝑚 (𝜆𝑎.⌜𝜑 𝑎⌝) (𝜆𝑒.⌜𝜓 𝑒⌝)

This rule states that a Horus judgment implies a similar Osiris judgment. In other words, a pure

computation can be viewed as an impure computation. The rule can also be read from bottom to

top: to prove an Osiris judgment about a computation𝑚, it suffices to prove a Horus judgment

about this computation. The protocol Ψ in the conclusion is arbitrary, so the empty protocol ⊥ can

be used: a pure computation has no control effects.

The specification of find_first, expressed at the level of Osiris, is as follows:

Pfind := 𝜆 l pred 𝑚. ∀ (𝜑 : 𝐴→ Prop).
⌜Spec [𝐴] pred (𝜆 𝑎 𝑚. pure

#
𝑚 (𝜆 𝑃 . 𝑃 ≡ 𝜑 𝑎) ⊥)⌝ −∗

⟨⊥⟩ impure
#
𝑚

(
𝜆 𝑜. ⌜𝑜 = Some 𝑎 ∧ 𝑎 ∈ l ∧ 𝜑 𝑎 ∨

𝑜 = None ∧ ∀𝑎 ∈ l. ¬𝜑 𝑎 ⌝

)
⊥

This specification states that find_first expects a list l and a function pred. It requires pred to be

a pure function whose Boolean result encodes the truth value of some predicate 𝜑 . It states that

the application of find_first to pred and l (represented by the placeholder𝑚) performs no control

effects, raises no exceptions, and returns an option 𝑜 such that if 𝑜 is Some 𝑎 then 𝜑 𝑎 holds and if 𝑜

is None then no element of l satisfies 𝜑 .
The verification of find_first goes as follows. We start with the goal of proving that find_first

satisfies the specification Pfind . We enter the function’s body, introducing find_first’s parameters.

We introduce 𝜑 as well as the hypothesis Spec [𝐴] pred . . .. We use one of Osiris’s reasoning rules

(not shown in this paper) to reason about the dynamic allocation instruction at line 2, which binds

the name Found to a fresh memory location. At this point, the goal has the form:

⟨⊥⟩ expr 𝜂 (let scan x = ... in ...)

(
𝜆 𝑜. ⌜𝑜 = Some 𝑎 ∧ 𝑎 ∈ l ∧ 𝜑 𝑎 ∨

𝑜 = None ∧ ∀𝑎 ∈ l. ¬𝜑 𝑎 ⌝

)
⊥.

In this goal, 𝜂 is a concrete environment, where the bindings of the names l, pred, and Found

are recorded. By applying impure-pure to this goal, we descend into Horus, with a similar goal:

the current environment, code fragment, and postconditions are unchanged. From there on, the proof

continues inside Horus. By exploiting a Horus specification of the function List.iter, which must

have been previously established, as well as the Horus specification of the function pred, it is easy
to finish the proof.

8.4 Soundness
We state the soundness of Osiris first at the level of the micro monad, then at the level of OLang.

This property is known as “adequacy” in the Iris literature. In short, if a computation or program

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.



Formal Semantics and Program Logics for a Fragment of OCaml 1:25

has been verified in Osiris under an empty protocol and an empty exceptional postcondition then

it can diverge or return a value but cannot crash or terminate abruptly.

Theorem 8.1. Let𝑚 be a computation. If ⊢ ⟨⊥⟩ impure 𝑚 (𝜆𝑣.⌜𝜑 𝑣⌝) ⊥ holds then executing𝑚 in
an empty heap cannot crash and cannot terminate with an unhandled effect or an unhandled exception.
Furthermore, if this computation returns a value 𝑣 then 𝜑 𝑣 holds.

Corollary 8.2. Let 𝑒 be an OLang expression. If ⊢ ⟨⊥⟩ expr 𝜂 𝑒 (𝜆𝑣 .⌜𝜑 𝑣⌝) ⊥ holds then
evaluating the expression 𝑒 in environment 𝜂 and in an empty heap cannot crash and cannot terminate
with an unhandled effect or an unhandled exception. Furthermore, if this computation returns a value 𝑣
then 𝜑 𝑣 holds.

9 Related Work
Formalizations of realistic ML-family languages. The semantics and type system of Standard ML

have been the subject of early mechanization attempts [Syme 1993; VanInwegen and Gunter 1993],

and later fully formalized [Lee et al. 2007; Harper and Crary 2014]. The semantics and type system

of a subset of OCaml, which is also a subset of OLang, are formalized by Owens [2008]. He defines

a small-step operational semantics and a deterministic executable interpreter, and proves that

they agree. He chooses a fully specified evaluation order (right-to-left), because this makes testing

easier. The CakeML compiler, whose source language is a large subset of Standard ML, is fully

mechanized and verified [Kumar et al. 2014; Tan et al. 2019; Myreen 2021]. The semantics of CakeML

is expressed as in “functional big-step” style [Owens et al. 2016]. Like ours, this interpreter takes

the form of a recursive eval function. However, it is not monadic: it uses an explicit fuel parameter,

explicit store passing, and explicit case analyses on outcomes. It is deterministic; external non-

determinism is simulated by taking a stream of events as an extra parameter.

Program logics for ML-family languages. CFML [Charguéraud 2010, 2011, 2020] is a mechanized

Separation Logic for an untyped subset of OCaml, which does not have exceptions or control effects.

It uses characteristic formulae, which can be viewed as a syntax-directed presentation of Separation

Logic. A similar mechanized Separation Logic has been defined for CakeML [Guéneau et al. 2017],

and has been extended to enable reasoning about the input-output behavior of non-terminating

programs [Pohjola et al. 2019]. A large part of Iris [Jung et al. 2018b], a powerful Separation Logic, is

language-independent. Nevertheless, Iris is often used in conjunction with HeapLang, an untyped

𝜆-calculus extended with mutable state and unstructured concurrency. Many verified algorithms

and data structures in the Iris literature have been first translated from a realistic language into

HeapLang, often through a manual transcription. We automate the translation of OCaml to OLang,

so using Iris (Osiris) to verify OCaml code becomes easier. Compared to HeapLang, OLang adds

exceptions, control effects, and unspecified evaluation order, but does not yet support concurrency.

Our treatment of delimited control effects is based de Vilhena and Pottier’s work [2021]. They

emphasize that forbidding multi-shot continuations allows the frame rule to remain everywhere

valid. van Rooij and Krebbers [2025] extend their work to a calculus that offers both one-shot

and multi-shot continuations and propose a variant of Separation Logic where the frame rule is

applicable only in areas where no multi-shot effects take place.

Semantics and logics for other realistic languages. There have been several efforts to mechanize C

[Norrish 1998; Ellison and Rosu 2012; Krebbers et al. 2014; Krebbers 2015]. The CompCert verified

compiler uses CompCert C, a variant of C, as its source language [Leroy 2006, 2009, 2024]. The

separation-logic-based verification frameworks for C include unverified systems such as VeriFast

[Jacobs and Piessens 2008] and CN [Pulte et al. 2023] and verified systems such as VST [Appel 2011;

Cao et al. 2018], Refined C [Sammler et al. 2021], and Iris/CompCert C [Mansky and Du 2024].
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WebAssembly has been fully mechanized using small-step operational semantics [Watt 2021] and

in several other styles, including a big-step semantics [Watt et al. 2019] and a monadic interpreter

[Watt et al. 2023]. Its small-step semantics has been extended with delimited control effects [Phipps-

Costin et al. 2023]. Several Separation Logics for WebAssembly have been proposed [Watt et al.

2019; Rao et al. 2023].

Early versions of Goose [Chajed et al. 2020], an Iris-based Separation Logic for Go, translate Go

into a custom monad embedded in Rocq. This monad appears somewhat similar in spirit to ours.

The paper shows just its syntax; its semantics is not defined. Later versions of Goose translate Go

to GooseLang, an extension of HeapLang. Like HeapLang, GooseLang is equipped with a small-

step substitution-based operational semantics. Goose has been used to verify several realistic Go

programs [Chajed et al. 2019, 2021; Sharma et al. 2023].

Computation trees and modular semantics. The freer monad [Kiselyov and Ishii 2015] offers

a representation of computations as finite trees. Its constructors correspond to our Ret and Stop (§4):
thus, our monad is a custom extension of the freer monad. Interaction trees (ITrees) [Xia et al.

2020], a co-inductive variant of the freer monad, represent computations as possibly infinite trees,

thereby offering native support for divergence. We prefer to work with finite trees and encode

general recursion via the system call CEval.
The freer monad and the ITree monad are parameterized with an event signature, that is, a set

of “events”, or “system calls”. They do not assign any semantics to events: this is done by defining

an “event handler”, that is, a monad morphism into some other monad—possibly an instance of

the freer monad or ITree monad with a different event signature. A complex event handler can

be constructed in several layers, that is, as the composition of several event handlers [Yoon et al.

2022]. This technique has been demonstrated in the Vellvm project [Zakowski et al. 2021] with

a modular construction of the semantics of LLVM IR.

In contrast with most of the Iris literature so far, which is based on small-step operational

semantics, Vistrup et al. [2025] define a generic Iris-based Separation Logic for ITrees. An important

common point between their work and ours is their organization in two layers: there, the HeapLang

layer and the ITree layer; here, the OLang layer and the micro layer. In both cases, the top layer is

a monadic interpreter, that is, a denotational semantics of the surface language; the bottom layer is

a computation tree monad. In Vistrup et al.’s work, the main judgment of the ITree-level logic, wpi,
is defined by guarded recursion over trees. It is parameterized with an effect signature and with

a “logical effect handler” that provides a specification for each effect. A logical effect handler is very

much the same thing as a “protocol” [de Vilhena and Pottier 2021]. In de Vilhena and Pottier’s paper,

as in the present paper, protocols are used to describe user-level effects and handlers, whereas in

Vistrup et al.’s work, logical effect handlers are used to describe meta-level effects and handlers

that serve as basic components in a modular description of the semantics. Vistrup et al. construct

an effect handler, a logical effect handler, and an adequacy theorem for each effect independently,

including crashing, nondeterministic choice, state, and concurrency. These handlers, and their

adequacy theorems, are then composed. We do not attempt to achieve this kind of modularity: we

define themicro monad in a monolithic way. Although our computation trees (§4) are in some ways

similar to ITrees, the main judgment of our logic, impure, is not defined by recursion over trees,

like Vistrup et al.’s wpi; instead, following a more traditional approach, it is defined in terms of the

small-step reduction relation that we have defined for our trees.

A limitation of ITrees is that they cannot describe computations or events whose arguments

or results are computations. A naive attempt to extend ITrees with such a capability leads to

an ill-formed type, whose definition involves a negative occurrence of itself. This makes it difficult

to model languages that involve first-class functions or first-class continuations. We avoid this
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problem via an indirection through syntax: in our inductive type of values (val), a first-class function
is represented by its environment and its code (VClo), and a first-class continuation is represented

by its address (VCont). Instead of following this path, Frumin et al. [2024] introduce Guarded

Interaction Trees (GITrees), whose definition relies on guarded recursion instead of co-induction,

therefore tolerates negative self-references. Using GITrees, they give a denotational semantics to

a calculus equipped with first-class functions, and Stepanenko et al. [2025] give a semantics to

calculi equipped with several forms of control effects. Both papers define an Iris-based judgment

wp for GITrees. Like our judgment impure, and unlike Vistrup et al.’s wpi, this judgment appears

to be defined in terms of a reduction relation on trees.

The ITree literature places emphasis on using the equational theory of ITrees to justify program

transformations. With this motivation in mind, Chappe et al. [2023] develop Choice Trees, an

extension of ITrees with non-determinism, which also enjoys a rich equational theory. In contrast,

we currently have no tools to compare two monadic computations. To address this need, in the

future, we would like to develop relational Separation Logics for the micro monad and for OLang.

10 Future Work
We have formalized the abstract syntax and dynamic semantics of a substantial fragment of OCaml.

Our semantic style is a modular combination of a monadic interpreter and a custom monad, whose

definition is original and relies on a small-step operational semantics. We have constructed two

program logics, Horus and Osiris, whose soundness we have machine-checked.

We have tested our semantics by executing a small number of examples. Much more work is

needed to ensure that our semantics is consistent with existing implementations of OCaml. We have

tested the expressiveness and usability of our program logics by verifying a few small programs.

Using Horus, we have verified a merge sort and some operations on splay trees. Using Osiris, we

have verified de Vilhena and Pottier’s short but challenging “control inversion” example [2021, §5].

The program logics are expressive enough to verify these examples in a straightforward manner.

However, the ratio of lines of verification over lines of code still seems quite high. Much more work

is needed to assess and improve the usability of our program logics.

In the future, we wish to enlarge OLang, so as to make progress towards a complete formal

definition of the dynamic semantics of OCaml, and so as to be able to offer Horus and Osiris as

practical tools for the interactive verification of OCaml programs. Among the features of OCaml

that we do not yet support, concurrency (the ability of spawning new threads via fork) and weak

memory seem most important. We believe that these features cannot be modeled using Par ; instead,
we plan to introduce a separate notion of thread. Concurrency is a well-understood feature of

Iris [Jung et al. 2018b], and there exists a variant of Iris that accounts for OCaml’s weak memory

model [Mével et al. 2020]; we plan to rely on these works. Several other major features that we do

not yet support are functors, objects and classes, and labeled and optional arguments.

In the long term, we would like to widen the scope of our program logics so as to verify liveness

properties of possibly non-terminating, effectful, concurrent programs; time and space complexity

properties; or security properties. Furthermore, we are interested in defining relational program

logics and in connecting our formal semantics of OLang with a verified compilation toolchain such

as CakeML [Kumar et al. 2014] or a future verified OCaml compiler.
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