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Context Formally verified compilers potentially help establishing the safety of critical systems; for ex-
ample, CompCert | ] has industrial use cases. However such compilers are limited in their support
of parallelism and concurrency, which is becoming a problem as some of those industrial users do want to
exploit more than one of the many cores of modern processors with multithreaded programs.

One of the main difficulties in overcoming this limitation is that multicore architectures do not necessarily
execute parallel programs as if all instructions were executed sequentially. This comes in particular from the
fact that microprocessors have several levels of cache and reorder instructions. The study of which behaviours
actually happen is the research subject called weak or relazed memory models | ]. Tt does not only study
micro architectures but also programming languages. This allow compilers to optimize programs in ways
that respect standardized memory models such as, for C, C11 or C20 | ; ].

Many compiler optimisations involve reorderings (and/or eliminations or introductions) of traditional
(non-synchronizing, or non-atomic) memory accesses, load and stores. A reordering is only performed when
the accesses appear to be independent. These optimisations assume the absence of race conditions, e.g. they
assume that no two non-atomic stores at the same address can happen at the same time.

When programming, race conditions can be avoided by inserting atomic operations, or synchronisations.
For example, if one thread does one non-atomic store at some location data, then an atomic release store
at some location flag, and another thread does an atomic acquire load at £lag then a non-atomic load at
data, then if the flag load reads from the flag store, then also the data load will read from that data
store, and not one that happened before.

The goal of this internship is to study the feasibility of a certified optimizing compiler for concurrent C
programs that takes into account weak memory models, in particular the release-acquire fragment.

Approach Many weak memory models are azxiomatic models: models that consider a large set of potential
program (pre)executions and rule out the invalid executions according to a set of rules that applies the the
global set of all memory events.

The standard approach to compiler verification, however, is based on operational semantics for both
source and target languages, between which one establishes multiple simulations relations, which operate on
operational semantics.

Some memory models for C are operational, either keeping a notion of a global state of the mem-

ory | ], or by providing a semantics with thread-local views of the memory, in which each atomic
operations updates the local view | ]. The motivation for the latter was to fit the separation logic
Iris | ] so as to use its proof framework, but such wview operational semantics should also be more

readily amenable to the verification of optimizing compilers than axiomatic memory models.

The first step of this internship will be to consider a small language and a few compiler passes that are
representative of the memory optimizations performed by CompCert, to equip this language with standard
operational semantics and view operational semantics. In this setting, we will study and adapt refinement
simulations so as to prove that some standard optimisations are valid, possibly under some hypotheses.

The longer-term goal is to adapt the CompCert compiler to handle standard C programs that make use
of release-acquire synchronisations, a paradigm that is more fine-grained than e.g. mutual-exclusion locks.

Related work CompCertTSO | ] uses the TSO memory model on the source language C, instead
of the standard C memory model. Concurrent Compcert | ; ], CompCertX | ; l,
and CASCompcert | ], model some or all memory operations as external calls, which does not allow
to reason properly about weak memory models and compiler optimisations such as instructions reordering.
Simuliris | | uses Iris to verify concurrent program optimizations, however their goal is to study


https://www.absint.com/compcert/index.htm#:~:text=Success,DLR

complex loop optimisations requiring coinductive reasoning that are mot in CompCert, and they assume
sequential consistency and not weak memory models.
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