
Embedding intersection types into multiplicative linear logic

Jean-Marie Madiot, LIPN

June 6, 2010

Abstract

Intersection types characterize properties on lambda-terms such as head, weak and strong nor-
malization. One can establish relations between intuitionistic logic and intersection types with idem-
potence. Here we consider a type system without idempotence and we underline common traits with
intuitionistic multiplicative linear logic. We analyse head normalization to try and get properties
such as completeness, soundness and subject reduction or expansion.

1 Introduction

λ-calculus. λ-calculus is a functional notion of computability: one can simulate a Turing machine by
rewriting over the set Λ of λ-terms which are defined by the a context-free grammar (1). The rewriting
system is called β-reduction (→β) and is described in (2), where t[u/x] is t in which u as replaced x. We
extend this rule into a reduction relation satisfying t→ t′ then tu→ t′u, ut→ ut′ and λx.t→ λx.t′.

Λ 3 t ::= x | λx.t | tt (1)

(λx.t)u→β t[u/x] (2)

In the following we will also consider the head-reduction→h (which only reduces the redexes in head
position) which is a deterministic reduction (included in the usual β-reduction) defined as the smallest
relation such that (λx.t)u →h t[u/x] and that if t →h t

′ then tu →h t
′u (if t is not of the form λy.m)

and λx.t→h λx.t
′.

We also consider α-equivalence by saying λx.u =α λy.u[y/x] (if y is not free in u). This notion of
equivalence comes naturally with the notion of computation which does not consider the actual name of
the variable in substitution.

Normalization. Turing-completeness is an important property but having computations to terminate
is also interesting. The λ-calculus has simple ways to guarantee computations termination – which in
terms of rewriting systems is called normalization. Indeed the simply typed λ-calculus Λ→ guarantees
that a λ-term simply typed is normalizable. However, not all normalizable terms are simply typable.
On the contrary intersection type systems provide means to type every normalizable term and guarantee
typed terms are normalizable. More precisely they can characterize several computational behaviours as
head-, weak or strong normalization.

Idempotence. The operation of intersection ∧ on types can have different properties such as commu-
tativity (A∧B = B ∧A), associativity ((A∧B)∧C = A∧ (B ∧C)) or idempotence (A∧A = A). This
last equality is satisfied in most intersection type systems and it can be interesting to consider a non
idempotent intersection.

In fact recent works show that non-idempotent intersection type systems can be used to catch quan-
titative properties of λ-terms, such as the number of steps needed by a suitable machine to compute
the head-normal form of a term [Car07]. We can wonder if behind this type system one can establish
relations with another logic. In the following we consider the relation between this kind of typing and
multiplicative linear logic (MLL).

1

Underlying logics The system DΩ [CDC78, CDC80, Sal80] defines the intersection types which
characterize (head-, strongly, and weakly) normalizable λ-terms [Kri93]. Intuitionistic logic (NJ) – in its
conjunctive version – can be seen as a logic containing the logic underlying to DΩ. Here we present a
type system decorating intuitionistic multiplicative linear logic (IMLL) natural deduction which we will
call MΩ. The underlying idea is that MΩ is to IMLL what DΩ is to NJ . In fact the system DΩ
authorizes contraction and weakening respectively by handling contexts additively and with the axiom
rule. Allowing contraction is a fundamental difference between the two systems.

2 Definitions

2.1 Normalization

Given a reduction relation → ∈ P (Λ2) a term t is said :

• in normal form iff t 6→ (i.e. ∀u ∈ Λ t 6→ u),

• weakly normalizable iff there exists a reduction sequence starting from t ending on a normal form,

• strongly normalizable iff there is no infinite reduction sequence starting from t

The head normal forms are the normal forms for →h so they are the λ-terms of the form:
λx1 · · ·xn.y u1 · · ·un. We define the following subsets of Λ: HN (respectively WN , SN) as the sets of
all head-(respectively weakly, strongly) normalizable terms. We also note NF the set of normal forms
and HNF the set of head normal forms.

2.2 Type system

A typing judgment is an element of J = C × (Λ× T) where T is the set of all possible types, Λ the set
of all λ-terms, V the set of variables and C = P(V × T) a set of ordered pairs (x,A) of a variable x and
a type A which we call “context” from now. The notation Γ `S t : A where Γ is a context, t a λ-term,
A a type and S a set of typing judgments means that (Γ, (t, A)) ∈ S. The notation x#Γ means that x
is not a variable typed in the context Γ : ∀(y,A) ∈ Γ x 6= y.

In the system DΩ the contexts are constrained to have each variable appears at most only once
as in most type systems, they can be seen as partial functions from V to T with a finite domain. In
the systems farther qualified of multiplicative (MΩ, λL-IMLL, λL-IMLL∗,MΩ∗) the contexts will be
multisets (C =MV×T) and will authorize multiple appearances of the same variable, as the multiplicity
of each variable in the context has a meaning in those type systems.

A type system S is described as a set of inference rules R of typing judgments of P(J n × J) which
is presented as a rule of arity n which usually are parametrized by terms, types and contexts. The type
system then designates also the set of all typing judgments which can be deduced inductively by the
inference rules. (i.e. the smallest set s such that for all n-ary rule r, ∀((h1, . . . , hn), c) ∈ r (∀i hi ∈ s)⇒
c ∈ s). Each typing judgment Γ ` t : A is proven by at least one proof tree π of the inference rules which
led to the typing judgment. We will note this π :: Γ ` t : A.

3 The system DΩ

The terms of the system DΩ [CDC78, Sal80] are those of the standard λ-calculus. The types of the
system DΩ are defined by the grammar 3 where α is a type variable. The rules of DΩ are described in
figure 1.

T 3 A ::= α | A→ A | A ∧A | Ω (3)

In all rules the context Γ of the conclusion can appear in each premise even if there are several
premises: the system is context-additive. The system handles contraction thanks to the ∧I rule and
the @ rule and weakening thanks to the axiom rule, the Ω rule and the ∧Ei

rules. For instance we can
inhabit the type A → A ∧ A thanks to the proof in figure 2. This is of course a desired property as a
term can have several times his initial types. The idempotence of the intersection is intimately related

2

ax
Γ, x : A ` x : A

Ω
Γ ` t : Ω

Γ, x : A ` t : B x#Γ →I
Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A →E
Γ ` tu : B

Γ ` t : A Γ ` t : B ∧I
Γ ` t : A ∧B

Γ ` t : A1 ∧A2 ∧Ei
Γ ` t : Ai

Figure 1: Inference rules of DΩ

to this type. As ∧ is a syntactical binary operator we need to have a different notion of equality. We will
talk about equality between two types A and B in this way : A is equal to B (A = B) if we can inhabit
both A→ B and B → A in the logic of the type system S.

x : A ` x : A x : A ` x : A ∧I
x : A ` x : A ∧A →I` λx.x : A→ A ∧A

Figure 2: Idempotence in DΩ

3.1 The system D

The types of the system D are those of the system DΩ but without Ω. The terms are also those of the
lambda-calculus, and the rules are those of the system DΩ without the rule Ω.

4 The system R

The system R has been introduced in [Car07] – using multisets and pairs instead of ⊗/1/ (– in a
context speaking of relational semantics of linear logic, as an intersection type system. In this system we
will denote the intersection ⊗ to underline its non idempotence as in linear logic this symbol designates
an operation in which A⊗A 6= A. Accordingly we will use (to denote implication. The neutral element
for ⊗ is 1 and corresponds to the Ω type in DΩ. We define the following type grammar:

A ::= α | A⊗ (A

A⊗ ::= 1 | A⊗ ⊗A

We will note (. . . (1⊗A1) . . .)⊗An by A1⊗· · ·⊗An or also by
⊗

i≤nAi. We can syntactically embed
this grammar into the grammar of the types of DΩ by translating the derivation tree (and replacing ⊗
by ∧, 1 by Ω). But here we insist on the fact that intersection (and thus 1) can only be in the left part
of function types (. This has a non trivial effect on properties the system will have.

The rules of the system R = (ax, λ, (@n)n∈N) are described in figure 3. We remark this is an infinite
set of rules as there is a rule @n for each n ∈ N.

ax
x : A ` x : A

Γ, x : A1, . . . x : An ` t : B x#Γ
λ

Γ ` λx.t : A1 ⊗ · · · ⊗An (B

Γ ` t : A1 ⊗ · · · ⊗An (B ∆i ` u : Ai ∀i ∈ [1, n]
@n (n ≥ 0)

Γ,∆1, . . . ,∆n ` tu : B

Figure 3: Inference rules of R

3

4.1 Non idempotence

The grammar does not authorize the previous notion of equality such as A⊗B = B⊗A since we cannot
have intersection types ⊗ in the right part of the function types (. We then define a different notion
of equality. We could say A = B iff we can replace any occurrence of A by B (and B by A) in any
formula provable in the system. Even if this property is difficult to work with, the system R has not an
idempotent intersection anymore, as 6` λfx.fx : (A (X) ((A ⊗ A (X) and 6` λfx.fx : (A ⊗ A (
X) ((A(X) (whereas 6` λfx.fx : (A(X) ((A(X)).

5 Normalizations in R

All standard normalization proofs for intersection types [CDC78, CDC80, Sal80, Kri93] use computability,
realizability or induction1 over ω2 arguments. In the case of the system R, we can prove normalization
using an explicit bound on the length of reductions and then a simple induction on ω.

5.1 Head-normalization in R

In this section we will develop the fact that every term typable in R is head-normalizable. In this section
every typing judgment (`) is relative to the system R (`R).

We define a function m of measure of the proof trees of R into the natural numbers, representing the
number of uses of the application rule @n in a proof tree. More formally, if r(ρ1, . . . , ρm) designates any
proof consisting of a rule named r (which can be ax, λ, or @n) applied to the proofs ρ1, . . . , ρm:

m(ax()) := 0 (4)

m(λ(ρ)) := m(ρ) (5)

m(@n(ρ, δ1, . . . , δn)) := 1 +m(ρ) +
∑

m(δi) (6)

In order to prove the desired property of subject reduction with a decreasing measure m to bound
the length of the reduction sequences we describe the behaviour of the typing of the result of a redex
by the substitution lemma, which allows us to derive a type for u[v/x] given a typing of u and a certain
number of typings of v.

Lemma 1 (Extended substitution lemma for R). If π is a proof and (δi)i∈[1,n] a family of proofs such
that π :: Γ, x : A1 . . . , x : An ` u : B (x#Γ) and ∀i ≤ n δi :: ∆i ` v : Ai then we can build a proof
S(π, (δi)i∈[1,n]) :: Γ,∆1, . . . ,∆n ` u[v/x] : B verifying the following equation:

m(S(π, δi)) = m(π) +
n∑
i=1

m(δi) (7)

Proof. We proceed by induction on the structure of u:

Case 1 (variable). u = y 6= x (so u[v/x] = y):
Here π is an axiom of the form Γ′, x : A1 . . . , x : An, y : B ` y : B. As there is no weakening in the
axiom rule we have n = 0 and Γ′ = ∅. We now build the proof S(π, (δi)) = π which is the axiom proving
y : B ` y : B. The equation (7) follows straightforwardly.

Case 2 (variable). u = x (so u[v/x] = v) :
Here π is an axiom of the form Γ′, x : A1 . . . , x : An ` y : B so n = 1 and Γ′ = ∅. The proof
δ1 :: ∆1 ` v : A1 is sufficient, so we take S(π, (δi)) = δ1 and the equation (7) follows: m(S(π, (δj)j)) =

m(δ1) = 0 +
∑1
j=1m(δj) = m(π) +

∑
jm(δj).

Case 3 (application). u = tw

... ρ

P ` t : C1 ⊗ · · · ⊗ Cp (B

... νj

Υj ` w : Cj j ∈ [1..p]
π = @p

P,Υ1 . . . ,Υp ` tw : B

1not just on natural numbers, but on a measure whose image is in N2 for instance

4

Then we recursively apply the lemma on ρ, ν1, . . . , νp by carefully distributing the indices among
[1, n]. Indeed Γ, x : A1, . . . , x : An = P,Υ1, . . . ,Υp. We define a notation i|Ψ designating the indexing
{i | x : Ai ∈ Ψ} where Ψ can be either P or any of the Υj .

By induction we get the following typing proofs:

S(ρ, (δi)i|P) :: P ′, (∆i)i|P ` t[v/x] : C1 ⊗ · · · ⊗ Cp (B (8)

∀j ∈ [1, p] S(νj , (δi)i|Υj
) :: Υ′j , (∆i)i|Υj

` w[v/x] : Cj (9)

(where P ′ and Υ′j are P and Υj without any type assignment for x.)

The following equation holds (⊆: for all j, Aj is either in Γ or in one of the ∆i; ⊇: each (∆i)i|− is
already a subset of (∆i)i) :

(∆i)i = (∆i)i|P ∪
⋃

j∈[1,p]

(∆i)i|Υj

so we can build with the rule @p a proof S(π, (δi)i) :: P ′,Υ′1 . . . ,Υ
′
p,∆1, . . . ,∆n ` t[v/x]w[v/x] : B.

The equation (7) holds:

m(S(π, (δi)i)) = 1 +m(S(ρ, (δi)i|P)) +

p∑
j=1

m(S(νj , (δi)i|Υj
))

= 1 +m(ρ) +
∑
i|P

m(δi) +

p∑
j=1

m(νj) +
∑
i|Υj

m(δi)

=

(
1 +m(ρ) +

p∑
j=1

m(νj)

)
+

n∑
i=1

m(δi)

= m(π) +

n∑
i=1

m(δi)

Case 4 (abstraction). u = λy.t

... ρ

Γ′, x : A1, . . . , x : An, y : C1, . . . y : Cp ` t : B
π = λ

Γ′, x : A1, . . . , x : An ` λy.t : C1 ⊗ · · · ⊗ Cn (B

By induction, we get S(ρ, (δi)) :: Γ′,∆1, . . . ,∆n, y : C1, . . . y : Cp ` t : B and by applying the rule λ
again we obtain a correct proof S(π, (δi)) = λS(ρ, (δi)).

m(S(π, (δi))) = m(S(ρ, (δi))) = m(ρ) +
∑

m(δi) = m(π) +
∑

m(δi)

The subject reduction lemma is true but we first describe the behaviour in the head reduction which
will help to prove a stronger property: the head reduction is finite.

Lemma 2 (Subject head reduction). For all λ-terms t and t′ such that t →h t
′ and π :: Γ `R t : A,

there exists a proof tree π′ such that π′ :: Γ `R t′ : A and m(π) = m(π′)− 1.

Proof. We prove the statement by induction on the structure of the λ-term t.

Case 1 (variable). t = x : t 6→h (contradiction)

Case 2 (abstraction). t = λx.u : then t′ = λx.u′ with u→h u
′ (by definition of head-reduction) and we

have a proof π̃ :: Γ′ ` u : A′ because the only way to type λx.u inMΩ is the λ-rule, so π̃ is basically the
remaining of π after removing this rule.

By induction we get a proof π̃′ :: Γ′ ` u′ : A′ s.t. m(π̃′) = m(π̃)− 1 and by applying the λ-rule to π
we get π′ and m(π′) = m(π̃′) = m(π̃)− 1 = m(π)− 1

Case 3 (application). t = wv

5

Subcase 3.1 (variable). w = x (t′ cannot exist)

Subcase 3.2 (application). w = uv
t = uv where u is not an abstraction. Then t′ = u′v and we proceed the same way to get a proof π̃
typing u (which is always possible because in the system R to type an application it is necessary to type
the left part) then by induction π̃′ typing u′ and then π′ typing t′.

m(π′) = m(π̃′) + 1 = m(π̃)− 1 + 1 = m(π)− 1

Subcase 3.3 (head-redex). w = λx.u
If t = (λx.u)v then t′ = u[v/x], this is the interesting case for which we will use the previously proved
extended substitution lemma. π has the following form :

... ρ

Γ′, x : α1, . . . x : αn ` u : A
λ

Γ′ ` λx.u : α1 ⊗ · · · ⊗ αn (A

... δi

∆i ` v : αi i ∈ [1, n]
π = @n

Γ ` (λx.u)v : A

m(π) = m(ρ) +
∑

m(δi) + 1

Thanks to the extended substitution lemma, π′ := S(π, δi) is a proof of Γ ` u[v/x] : A and the
equation (7) gives the relation

m(π′) = m(S(π, (δi))) = m(ρ) +
∑

m(δi) = m(π)− 1

Lemma 3 (Subject reduction). For all λ-terms t and t′ such that t → t′ and π :: Γ `R t : A we can
prove π′ :: Γ `R t′ : A with m(π′) ≤ m(π) (m can be decreased not just by 1, but by any natural integer
r, including 0)

Proof. In the case of any β-reduction we proceed the same way except for the case study:

• t = x (impossible)

• t = uv and t′ = u′v (same as previous lemma, decreased by r ≥ 0)

• t = (λx.u)v and t′ = u[v/x] (same as previous lemma, r = 1)

• t = λx.u (so t′ = λx.u′) (same as previous lemma, r ≥ 0)

• t = uv and t′ = uv′ : the last rule has to be @n. We can apply the induction hypothesis on all
proofs typing v to obtain proofs typing v′ (even if n = 0) to build the proof tree typing uv′. (If
n = 0 then r = 0 otherwise r is the sum of all of the r obtained by induction.)

Lemma 4 (finite head reduction in R). For all λ-term t, for all context Γ and for all type A: if Γ `R t : A
then the head reduction of t is finite.

Proof. The result is straightforward. In fact we prove a stronger property : if π :: Γ `R t : τ then the
length of all the sequences of head reductions starting from t is bounded by m(π).

Corollary 5 (R ⊆ HN). For all λ-term t, for all context Γ and for all type A: if Γ `R t : A then t is
head-normalizable.

6

5.2 Strong normalization in R∗

We have a similar result for strong normalization corresponding to the system R∗.

Lemma 6 (Subject reduction in R∗). For all λ-terms t and t′ such that t → t′ and π :: Γ `R∗ t : A,
there exists a proof tree π′ such that π′ :: Γ `R∗ t′ : A and m(π) > m(π′).

Proof. The proof does look like the one of lemma 3 for the subject reduction in R except for the
application case and for the statement of the substitution lemma.

Case 1 (variable). t = x: there is no t′.

Case 2 (abstraction). t = λx.u:
t′ = λx.u′ where u → u′. The proof of lemma 2 is still convenient as when reusing the proof subtree in
the induction we do not add any rule @0.

Case 3 (application). t = wv

Subcase 3.1 (left). t = uv, t′ = u′v
The original proof holds – even if u is an abstraction – thanks to the fact that in R as well as in R∗

typing uv needs typing u.

Subcase 3.2 (right). t = uv, t′ = uv′

We have v → v′. Thanks to the absence of the rule @0, when typing uv one has to type also v at least
once, so the application of the rule @n (n ≥ 1) provides us with n proof trees δi of ∆i `R∗ v : Ai, which
can be recursively transformed into δ′i :: ∆i `R∗ v′ : Ai where ∀i m(δ′i) < m(δi) which can be used to
prove π′ :: Γ,∆1, . . . ,∆n `R∗ uv′ : B with the following property:

m(π′) = m(ρ) +

n∑
i=1

m(δ′i) ≤ m(ρ) +

n∑
i=1

(m(δi)− 1) ≤ m(π)− n < m(π)

Subcase 3.3 (redex). t = (λx.u)v, t′ = u[v/x]
The exact original proof holds as the substitution lemma do not change any arity of rules @n, so work
in R∗ as well as in R. However the substitution lemma is slightly different since we have to consider the
weakening in the axiom rule; the equation is then an inequation:

m(S(π, δi)) ≤ m(π) +

n∑
i=1

m(δi)

The proof of the substitution lemma is modified in the axiom case (0 ≤anything), in the abstraction case
(simple induction) and in the application case (≤ instead of = between the first and the second line of
equalities)

Theorem 7 (R∗ ⊆ SN). For all λ-term t, for all context Γ and for all type A if Γ `R∗ t : A then t is
strongly normalizable.

Proof. Thanks to π :: Γ `R∗ t : A the previous lemma bounds the length of all reduction sequences
starting from t by m(π). Like in lemma 5 as its proof does not use the fact →h is a strategy but any
reduction making m decrease.

5.3 Weak normalization in R

We will show that for any term typable in R with both type and context not containing 1 in respectively
positive and negative position is weakly normalizable. We use the normal order i.e. the leftmost, outer-
most reduction →l as a normalizing strategy2. We will first state a slightly different subject reduction
lemma.

Positive ∈+ and negative ∈− positions describe the number of times we go left on a (in a path in
a type:

2the normal order is the smallest relation →l such that (λx.t)u→l t[u/x] and that if t→l t
′ then tu→l t

′u, xt→l xt
′

and λx.t→l λx.t
′

7

• A ∈+ A

• A ∈s B ⊗ C if (A ∈s B) or (A ∈s C) where s can be whether + of −

• A ∈s B (C if (A ∈−s B) or (A ∈s C)

• A ∈s (Γ, x : B) if A ∈s B

• A ∈s (Γ ` B) if A ∈s B or A ∈−s Γ

Lemma 8 (Subject normal reduction in R\1+). For all λ-terms t not in normal form and π :: Γ `R t : A
and 1 6∈+ Γ ` A, there exists a proof tree π′ such that π′ :: Γ `R t′ : A and m(π) > m(π′), where t→l t

′.

Proof. We proceed by induction on t.

Case 1 (Not in HNF). If t is not in head normal form we apply lemma 6 to obtain t →h t′and
π′ :: Γ ` t′ : A with m(π′) < m(π). The head reduction is the first step of the leftmost reduction, so the
only remaining case is when t is in head normal form (but not in normal form).

Case 2 (HNF, λ). t = λx.u
t′ = λx.u′ where u→l u

′. A is of the form B1 ⊗ · · · ⊗ Bn (C so 1 6∈+ C and 1 6∈− Bi. The proof tree
contain also the typing judgment Γ′ = Γ, x : B1, . . . , x : Bn ` u : C we indeed have 1 6∈− Γ′ so we can
use the induction property and the remaining of the proof is the same as in original lemma 2.

Case 3 (HNF, ¬λ). t = xu1 . . . um This is a significant difference with head-normalization. t′ =
xu1 . . . u

′
k . . . um where uk →l u

′
i (where k is the smallest j for which uj is not in normal form). For all

j, the proof tree contains typing of the subterms:

Γj ` xu1 . . . uj :
⊗

i≤nj+1

Bj+1
i (· · ·(

⊗
i≤nm

Bmi (A

notably:

Γ0 ` x :
⊗
i≤n1

B1
i (· · ·(

⊗
i≤nm

Bmi (A

As this last typing judgment can only be established thanks to the axiom rule, Γ0 is exactly the right
part of the typing judgment. Since 1 6∈− Γ = Γm ⊇ · · · ⊇ Γ0 we can deduce 1 6∈− Γ0 so ∀i, j A 6∈+ Bji .
Moreover as 1 ∈+ 1 =

⊗
i≤0 Ci we can also deduce ∀j nj ≥ 1.

The proof derivation π for Γ `R xu1 . . . uk : A′ where A′ =
⊗

i≤nk+1
Bk+1
i (· · ·(

⊗
i≤nm

Bmi (A
has the form:

ax
Γk−1 ` u1 . . . uk−1 : Bk1 ⊗ · · · ⊗Bkn (A′

... δ
k
i

∆k
i ` v : Bki i ∈ [1, nk]

π = @nkΓk ` xu1 . . . uk : A′

Since for all i we have 1 6∈− ∆k
i (because ∆k

i ⊆ Γk), we can use the induction hypothesis to get for each
i ∈ [1, n] a proof δ′ki :: ∆k

i `R v′ : Bki .
We can apply on all δki the induction hypothesis and the equation in lemma 6 holds because m

decrease for a positive number nk of subproofs.

Theorem 9 (R\1+ ⊆ WN). For all λ-term t, for all context Γ and for all type A, if Γ `R t : A and
1 6∈+ Γ ` A then t is weakly normalizable (with strategy →l).

Proof. Same as before using lemma 8. For all π :: Γ `R t : A there is a →l reduction sequence of length
≤ m(π) starting from t whose last term is in normal form.

8

Both conditions 1 6∈+ A and 1 6∈− Γ are necessary R is not weakly normalizable if we only have
the condition 1 6∈+ A. Indeed the λ-term x(δδ) is not weakly normalizing and neither is λx.x(δδ) because
the only redex in each term gives the term itself after reduction. However x(δδ) is typable without the
condition 1 6∈− Γ and λx.x(δδ) is without 1 6∈+ A.

R\1+ is not strongly normalizable Because we can type a term without typing each subterm in R,
we can build a term with a non normalizing part (such as δδ). Such a term cannot strongly normalize.
For exemple `R\1+ (λx.λy.y)(δδ) : α(α.

5.4 Typing head normal forms

Lemma 10 (HNF ⊆ R). For all term t in head normal form, there exists a type A and a context Γ
such as Γ `R t : A.

Proof. Firstly, if t is in head normal form since it has the form (n,m ≥ 0, y is a term variable and ui are
arbitrary terms) t = λx1 . . . λxn.yu1 . . . um. When y is not a xi, we can build a proof tree proving the
typing judgment y : 1 (· · ·(1 (A ` t : 1 (· · ·(1 (A where there is n occurrences of 1 in the
type of y in the context and m occurrences of 1 in the type of t. (To do so, we apply m times the @0

rule on the axiom rule typing y and then n times the λ rule).
If y = xi (for the greatest i possible) then the ith rule λ (starting from the root of the proof) actually

has xi in the context so with the same rules we get the following typing judgment where the ith 1 is
replaced: ` λx1 . . . λxn.yu1 . . . um : 1 (· · ·((1 (· · ·(1 (A) (· · ·(1 (A.

5.5 Typing normal forms

Lemma 11 (NF ⊆ R∗ ∩ R\1+). For all term t in normal form, there exists a type A and a context Γ
such that Γ `R∗ t : A and Γ `R t : A with no 1 in positive position in Γ ` A (i.e. 1 6∈+ A and 1 6∈− Γ).

Proof. In fact use an even more restricted system with only three rules R1 = {λ, ax,@1} where ax is the
axiom rule without weakening. Each rule of R1 is provable both in R and in R∗.

We proceed by induction on t. Because t is in normal form t = λx1 . . . xn.yu1 . . . um where the
ui are in normal forms so we get δi :: ∆i ` ui : Bi with 1 6∈+ Bi and 1 6∈− ∆i. To the axiom
rule y : B1 (· · · (Bm (α we apply m times the @1 rule to get the following typing judgment:
y : B1 (· · ·(Bm (α,∆1, . . . ,∆m = Γ ` yu1 . . . um : α.

We remark that 1 6∈− Γ. We can now apply n times the λ rule with the variables xn, xn−1, . . . , x1

and obtain: Γ′ ` λx1 . . . xn.yu1 . . . um : C1 (· · · (Cn (α where Γ′ and all the Ci come from Γ so
1 6∈− Γ′ and 1 6∈− Ci and eventually 1 6∈+ C1 (· · ·(Cn (α.

5.6 Typing normalizable terms

Lemma 12 (Expansion substitution lemma in R). If π :: Σ ` t[u/x] : A then there exists n ∈ N, some
types B1, . . . , Bn, some contexts Γ,∆1, . . . ,∆n such that:
δi :: ∆i ` u : Bi
γ :: Γ, x : B1, . . . , x : Bn ` t : A
Σ = Γ,∆1, . . . ,∆n

Proof. By induction on the structure of π.

Case 1. t = x then t[u/x] = u we take n = 1, B1 = A,Γ = ∅, γ = ax,∆1 = Σ, δ1 = π

Case 2. t = y 6= x then t[u/x] = y we take n = 0,Γ = Σ, γ = π

Case 3. t = λy.v then t[u/x] = λy.v[u/x] where y 6∈ FV (u) without loss of generality.

Σ, y : C1, . . . , y : Cm ` v[u/x] : D
λ

Σ ` λy.v[u/x] : C1 ⊗ · · · ⊗ Cm (D

By induction Σ′ = Σ, y : C1, . . . , y : Cm is splitted into Γ′,∆1, . . . ,∆n and ∆i ` u : Bi so if y is in one of
the ∆i then y ∈ FV (u) which is impossible. So Γ′ = Γ, y : C1, . . . , y : Cm and we can apply the λ rule
to obtain the judgment Γ, x : B1, . . . , x : Bn ` λy.v : C1 ⊗ · · · ⊗ Cm (D

9

Case 4. t = vw then t[u/x] = v[u/x]w[u/x]. Applications on the induction hypothesis on the left
premise typing v[u/x] and each right premises typing w[u/x] gives us respectively n, (Bi), (Γi) and
mj , (Ci)j , (∆i)j . We straightforwardly build n + m, ((Bi), (Ci)1, . . . , (Ci)p) which corresponds to the
typing of vw = t.

Lemma 13 (Subject expansion in R). If t→ t′ and π′ :: Γ `R t′ : A then there exists π :: Γ `R t : A

Proof. By induction on the structure of π

Case 1. t = x (impossible)

Case 2. t = λy.u then t′ = λy.u′ with u→ u′.
π = λ(ρ) with ρ′ :: Γ, x : B ` u′ : C applying the induction hypothesis on ρ′ we obtain ρ :: Γ, x : B ` u : C
from we conclude π = λ(ρ).

Case 3. t = uv and t′ = u′v. Then π′ = @n(γ′, (δi)), we keep (δi) and we apply the IH on γ′

Case 4. t = uv and t′ = uv′. Then π′ = @n(γ, (δ′i)), we keep (γ) and we apply the IH on all the (δ′i)
(even if n = 0).

Case 5. t = (λx.u)v and t′ = u[v/x]. We use the expansion substitution lemma to get from Γ ` u[v/x] :
A the types B1, . . . , Bn and the proofs γ and (δi) to build the following proof tree:

... γ

Γ, x : B1, . . . , x : Bn ` u : A
λ

Γ ` λx.u : B1 ⊗ · · · ⊗Bn (A

... δi

∆i ` v : Bi @n
Γ,∆1, . . . ,∆n ` (λx.u)v : A

Note the subject expansion is true for any reduction → and not only the head-reduction →h.

Theorem 14 (HN ⊆ R). For all head-normalizable term t, there exists π, Γ, and A such that π :: Γ `R
t : A.

Proof. We can define head-normalizability with an inductive property: t is head-normalizable iff t is in
head normal form or t→ t′ and t′ is head-normalizable. Therefore lemma 10 typing head normal forms
in R and lemma 13 typing predecessors in R are enough to complete the proof.

Theorem 15 (WN ⊆ R\1+). For all weakly normalizable term t, there exists π, Γ, and A such that
π :: Γ `R t : A with 1 not in positive position in Γ ` A

Proof. We can define weak normalizability with an inductive property: t is weakly normalizable iff t is
in normal form or t → t′ and t′ is weakly normalizable. Therefore lemma 11 typing normal forms in
R\1+ and lemma 13 typing predecessors in R (while preserving both A and Γ) are enough to complete
the proof.

Theorem 16 (SN ⊆ R∗). For all strongly normalizable term t, there exists π, Γ, and A such that
π :: Γ `R∗ t : A.

Proof. The proof is quite similar to the previous completeness theorems (14, 15) but we need slightly
different lemmas:

• Expansion substitution lemma:
If π :: Σ `R∗ t[u/x] : A and x ∈ FV (t) then there exists n ∈ N∗, some types B1, . . . , Bn, some
contexts Γ,∆1, . . . ,∆n such that:
δi :: ∆i `R∗ u : Bi
γ :: Γ, x : B1, . . . , x : Bn `R∗ t : A
Σ = Γ,∆1, . . . ,∆n

10

• Typing predecessors:
If t→ t′ and t strongly normalizable and π′ :: Γ′ `R t′ : A′ then there exists π :: Γ `R t : A

Finally we have proven the system R characterizes all the head-normalizable terms (R = HN) that R
with no 1 in positive position in the final typing characterizes weakly normalizable terms (R\1+ = WN)
and that R∗ characterizes strongly normalizable terms (SN = R∗). Proofs of normalization were done by
bounding the length of the reductions. We have also proven the subject reduction forR, R\1+ andR∗ and
the subject expansion for R, R\1+. (There is no such thing for R∗ because KI(δδ) 6∈WN →β I ∈WN).

6 NJ and DΩ

The intuitionistic logic – in its conjunctive
fragment (see right) – can be decorated by
λ-terms to obtain the type system DΩ if
we replace T by Ω (see figure 1). The only
difference with the usual decoration is for
the rules T , ∧I and ∧E .

ax
Γ, A ` A T

Γ ` T

Γ, A ` B →I
Γ ` A→ B

Γ ` A→ B Γ ` A →E
Γ ` B

Γ ` A Γ ` B ∧I
Γ ` A ∧B

Γ ` A1 ∧A2 ∧Ei
Γ ` Ai

6.1 Aside from Curry-Howard

Decorating NJ with a conjunction seen as an intersection implies moving away from the Curry-Howard
correspondence. In fact whereas in the Curry-Howard correspondence we associate to each rule a con-
structor (x, ?, λ, application, 〈, 〉, π1, π2) in the intersection types decoration we lose constructor for
both Ω and ∧ (leaving only x, λ and application). Of course this way of using conjunction corresponds
to the intersection of types as typing of type A∧B means typing the same term with both types A and
B.

6.2 Not quite NJ

As described in [Hin84] not all formulas provable in NJ are provable in DΩ. We can give a more
immediate counter example: A → B → A ∧ B is provable in NJ but the immediate proof cannot be
decorated in DΩ. In fact, this formula is not provable in DΩ [BDC95].

7 MΩ

In order to establish a relation between intersection type systems without idempotence and multiplicative
linear logic we develop a partial decoration of the intuitionistic multiplicative linear logic, the type system
MΩ. It characterizes the head-normalizable terms but does not enjoy other interesting properties of a
common type system as the subject reduction or the subject expansion3.

3as seen farther we do not know whether the property of subject expansion is true

11

7.1 Natural deduction for IMLL
Using IMLL – the intuitionistic version
of MLL – let us be able to consider only
operators ⊗, 1,(. The intuitionistic role
of the other connectives ℘ and ⊥ is com-
pletely fulfilled by the left side of the se-
quents (1 `,⊗ `).
We present the natural deduction version
of IMLL [BBdPH93, Tro95] on the right.
We remark the multiplicative concatena-
tion of contexts in the case of several
premises, and the absence of weakening
in every rule.

ax
A ` A

1I` 1
Γ ` 1 ∆ ` C 1E

Γ,∆ ` C

Γ, A ` B
(I

Γ ` A(B
Γ ` A(B ∆ ` A (E

Γ,∆ ` B

Γ ` A ∆ ` B ⊗I
Γ,∆ ` A⊗B

Γ ` A⊗B ∆, A,B ` C ⊗E
Γ,∆ ` C

7.2 MΩ : a decoration of N-IMLL

The figure 4 gives the inference rules for a decoration of N -IMLL in a comparable way to DΩ seen as a
decoration NJ . We will note this decorationMΩ as the concatenation of the contexts make them behave
like multisets – which we usually noteM. We remark there is no structural rule (contraction, weakening)
in MΩ. However the number of occurrences of a same variable in the contexts can be greater than one
(zero, respectively) thanks to the tensor elimination rule⊗E (the 1 elimination rule, respectively). The
figure 5 shows typings of δ = λx.xx and K = λxy.x.

ax
x : A ` x : A

1I` t : 1
Γ ` u : 1 ∆ ` t : C 1E

Γ,∆ ` t : C

Γ, x : A ` t : B x#Γ
(I

Γ ` λx.t : A(B
Γ ` t : A(B ∆ ` u : A (E

Γ,∆ ` tu : B

Γ ` t : A ∆ ` t : B ⊗I
Γ,∆ ` t : A⊗B

Γ ` u : A⊗B ∆, x : A, y : B ` t : C x, y#∆ ⊗E
Γ,∆ ` t[u/x, y] : C

Figure 4: MΩ : decoration of N -IMLL

ax
x : A⊗ (A(B) ` x : ∼ (E (ax, ax)

y : A, z : A(B ` zy
⊗E

x : A⊗ (A(B) ` xx : B
(I` δ : A⊗ (A(B) (B

ax
x : A ` x : A 1E

x : A, y : 1 ` x : A
(I ×2` K : A(1 (A

Figure 5: Contraction and weakening in MΩ

7.2.1 A partial decoration

This decoration is not complete, as there is formulas provable
in IMLL which are not inhabited in the type assignment de-
scribed above. For instance A (B (A ⊗ B is provable in
IMLL (see right).

ax
A ` A

ax
B ` B ⊗I

A,B ` A⊗B
(I

A ` B (A⊗B (I` A(B (A⊗B
In the following attempt to decorate the previous proof tree we must satisfy some equation we

annotate the proof tree with. We see that we end up in a impossible situation (x = y 6= x). More
generally A(B (A⊗B is not a inhabited type in this type system.

ax(⇒ u = x)
x : A ` u : A

ax(⇒ v = y)
y : B ` v : B ⊗I(⇒ t = u = v)

x : A, y : B ` t : A⊗B
(I (⇒ x 6= y)

x : A ` λy.v : B (A⊗B
(I` λx.λy.v : A(B (A⊗B

12

7.3 Completeness of MΩ

The system MΩ is complete as it can type with a non trivial type any head-normalizable term (i.e.
HN ⊆ MΩ). The way we prove that here is that MΩ is a supersystem of R (R ⊆ MΩ) by operating
renaming in the proofs of R. The completeness ofMΩ is immediate as R is already complete (HN ⊆ R).
The reason we use R is that MΩ seems not to have the usual property used for proving completeness
(i.e. subject expansion).

Lemma 17 (Customization lemma). If π :: Γ, x : B1, . . . , x : Bn `R t : A then there exists π′, t′ and
fresh variables x1, . . . , xn such that π′ :: Γ, x1 : B1, . . . , xn : Bn `R t′ : A and t = t′[x/x1 . . . xn] with
size(π′) = size(π).

Proof. By induction on π:

Case 1. π = ax (then t = y). It depends whether y = x or not but the result is straightforward.

Case 2. π = λ(ρ) (then t = λy.u and y 6= x without loss of generality)
By induction we obtain free variables x1, . . . , xn and u′ such that u = u′[x/x1 . . . xn]. With t′ = λy.u′,

t = λy.u = λy.(u′[x/x1 . . . xn]) = (λy.u′)[x/x1 . . . xn] = t′[x/x1 . . . xn]

Case 3. π = @m(ρ, (δ)) (then t = uv)
Γ, x : B1, . . . , x : Bn = Σ,∆1, . . .∆n so the Bis are splitted into m+1 parts into each premise : ci1, . . . , c

i
ki

.
for i ∈ [0,m]:

ρ :: Σ′, x : Bc01 , . . . , x : Bc0k0
` u : D1 ⊗ · · · ⊗Dm (A

δi :: ∆′i, x : Bci1 , . . . , x : Bciki

` u : Di

With Σ = Σ′, x : Bc01 and ∆i = ∆′i, x : Bci1 . By concatenating the contexts Σ′ ∪
⋃
i ∆′i we obtain Γ and

concatenating all recursively obtained cij gives [1, n] so applying @m to the newly obtained ρ′, (δ′)i sum
up to the exact wanted context.

Lemma 18 (R ⊆MΩ). If Γ `R t : A then Γ `MΩ t : A

Proof. We cannot directly prove the rules of R in the system MΩ because MΩ deals with intersection
of only two types at a time, but lemma 17 solves this problem. We prove by induction on the size of π
that if π :: Γ `R t : A then Γ `MΩ t : A.

Case 1 (axiom). π = ax and the same rule is in MΩ

Case 2 (abstraction). t = λx.u. We have a proof tree of this form:

... γ

Γ, x : A1, . . . , x : An ` u : B x#Γ
λ

Γ ` λx.u : A1 ⊗ · · · ⊗An (B

Subcase 2.1 (n ≤ 2). We choose n fresh variables x1, . . . , xn and we apply lemma 17 on γ to obtain
γc :: Γ, x1 : A1, . . . , xn : An `R u′ : B where u′[x/x1 . . . xn] = u. We apply the induction hypothesis
on γc (size(γc) = size(γ) < size(π)) we obtain γ′c :: Γ, x1 : A1, . . . xn : An `MΩ u′ : B on which we
successively apply, for i ∈ [1, n− 1], the rule ⊗E(ax,−):

Pi = (Γ, x : A1 ⊗Ai, xi+1 : Ai+1, . . . xn : An `MΩ u′[x/x1 . . . xi] : B)

ax
x : (A1 ⊗Ai)⊗ xi+1 ` x : (A1 ⊗Ai)⊗ xi+1 Pi x#(Γ, xi+2 : Ai+2, . . . , xn : An)

⊗E
Pi+1

because u′[x/x1 . . . xi][x/x, xi+1] = u′[x/x1 . . . xi+1]. We had γ′c :: P0 and now we have (⊗E(ax,−))n−1(γ′c) =
γ′ :: Pn = Γ, x : A1 ⊗ · · · ⊗An ` u : B.

13

Subcase 2.2 (n = 0). By induction on γ :: Γ `R u : B we obtain γ′ :: Γ `MΩ u : B on which we apply
1E(ax,−) to obtain 1E(ax, γ′) :: Γ, x : 1 `MΩ u : B.

Subcase 2.3 (n = 1). By induction on γ :: Γ, x : A1 `R u : B we obtain γ′ :: Γ, x : A1 `MΩ u : B

At last we just have to apply the (I rule on γ′ to obtain Γ `MΩ t : A1 ⊗ · · · ⊗An (B.

Case 3 (application). t = uv. We juste have to use the induction on all the n + 1 premises and then
group all the proof ∆i ` v : Ai under the tensor by applying n− 1 times the ⊗I rule (or once the 1I rule
if n = 0). We obtain ∆1, . . . ,∆n `MΩ v : A1 ⊗ · · · ⊗An and then we apply (E on uv.

Corollary 19 (Completeness of MΩ). If t is head-normalizable then t is typable in MΩ with a non
trivial type.

Proof. Γ `R t : A for some A,Γ by lemma 14 and by lemma 18 Γ `MΩ t : A. As A is a type of the
grammar of R, it cannot be trivial.

7.4 Subjection reduction in MΩ

We don’t have the property of subject reduction in MΩ. Indeed, the term t = x(Iz)(x(Iz)) can be
β-reduced in t′ = xz(x(Iz)) (where I = λy.y). We can see x(Iz) appears twice in t so it let us typing
once x(Iz) with a ⊗-type to use it twice thanks to the proof tree described in figure 6.

ax
x : D ` x : D

(E ((I (ax), ax)

z : C ` Iz : C (E
z : C, x : D ` x(Iz) : A⊗ (A(B)

ax
b : A(B ` b : A(B

ax
a : A(B ` a : A (E

a : A, b : A(B ` ba : B
⊗E

z : C, x : D = C ((A⊗ (A(B)) ` x(Iz)(x(Iz)) : B

Figure 6: A proof tree typing x(Iz)(x(Iz))
However one cannot use substitution from a smaller term to obtain t′ = xz(x(Iz)). To type t′ one

has to have both x and z twice in the context (or with a ⊗-type) with a proof tree starting with ⊗E rules
to split z then x into four distinct variables. (figure 7). However there is no proof of typing t′ with the
same context as in the proof typing t. However, we can type t with the same typing judgment as t′ so
this example is a counter example to the subject reduction property, but not to the subject expansion.

ax
x1 ` x1

ax
z1 ` z1 (E

z1 : C, x1 : C (A(B ` x1z1 : A(B

ax
x2 ` x2

ax
y ` y

(I` I : C (C
ax

z2 ` z2 (E
z2 : C ` Iz2 : C

(E
z2 : C, x2 : C (A ` x2(Iz2) : A

(E
z1 : C, z2 : C, x1 : C (A, x2 : C (A(B ` x1z1(x2(Iz2)) : B

⊗E(ax,−)
z1 : C, z2 : C, x : (C (A)⊗ (C (A(B) ` xz1(x(Iz2)) : B

⊗E(ax,−)
z : C ⊗ C, x : (C (A)⊗ (C (A(B) ` xz(x(Iz)) : B

Figure 7: A proof tree typing xz(x(Iz))

7.5 Soundness of MΩ

The system MΩ is sound, that is to say it non trivially types all head-normalizable terms. In order to
prove this property, we use realisability arguments by defining an interpretation for each type of MΩ.
We use indeed the generic proof in [Kri93]. We will use the same adapted pair (N ,N0) below.

Let N = HN be the set of a head-normalizable terms, and N0 the set of all terms in head normal
form not starting with a λ: N0 = {yu1 . . . un | ui ∈ Λ}.

14

We define inductively J K : T → P(Λ) (where T is the set of types of MΩ and P(Λ) the power set of
Λ the set of λ-terms):

J1K := Λ (10)

JαK := N (11)

JA(BK := {t | ∀a ∈ Λ (a ∈ JAK⇒ ta ∈ JBK)} (12)

JA⊗BK := JAK ∩ JBK (13)

Lemma 20. For all n ≥ 0, y, u1, . . . , un, A we have yu1 . . . un ∈ JAK

Proof. By induction on A, the interesting case if when A = B (C. Let un+1 ∈ JBK. By induction
yu1 . . . unun+1 ∈ JCK so yu1 . . . un ∈ JB (CK.

Lemma 21. If tx is reducible by head reduction to a head normal form then so is t.

Proof. (It is true even if x is not a variable.) We can use the fact that we can type tx in the system R
so we can type t also, and then we can use the stronger property proven in the proof of lemma 5 which
bounds the length of head reduction sequences.

Lemma 22. For all t, A if t ∈ JAK and A is not trivial then t is head normalizable by head reduction.

Proof. By induction on A.
If A = A1⊗A2 then there exists i ∈ {1, 2} such as Ai is not trivial. t ∈ JA1 ⊗A2K = JA1K∩ JA2K ⊆ JAiK:
we use the induction hypothesis on Ai.
If A = B (C then C is also not trivial. Let x be a fresh variable. By lemma 20 we have x ∈ JBK so by
definition of J K, tx ∈ JCK. By induction tx is so head normalizable by head reduction, then so is t by
lemma 21.

Lemma 23 (Saturation). If T ′ = t[u/x]u1 . . . un ∈ JAK then T = (λx.t)uu1 . . . un ∈ JAK

Proof. By induction on A (for all t, n, (ui))

• A = 1 : T is in JAK anyway.

• A = α : T →h T
′ and T ′ ∈ JαK = HN so T is also in HN = JAK.

• A = A1 ⊗A2. By induction if T ′ ∈ JAiK then T ∈ JAiK so this is also true for JA1K ∩ JA2K.

• A = B (C : let un+1 in JBK. T ′un+1 ∈ JCK so by induction (with C and n + 1) we get
Tun+1 ∈ JCK. So T ∈ JCK

Lemma 24 (Adequacy). If (x1 : A1
1, . . . , x1 : Ap11), . . . , (xn : A1

n, . . . , xn : Apnn) `MΩ t : B and if

(∀i, j ui ∈ JAji K) then t[u1/x1, . . . , un/xn] ∈ JBK.

Proof. By induction on π the proof tree typing t. The cases where the last rule of π is ax, 1I , 1E or ⊗I
are straightforward.

Case 1 (π = ⊗E). t = v[w/xi, xj] then pi = pj = 1 the induction hypothesis on v covers both the
substitution [w/xi, xj] (from the application of the rule) and the substitutions [uk/xk]k 6=i,j (from the
statement of the lemma)

Case 2 (π =(I). t = λxn+1.v where xn+1 is fresh. B = C (D.
Let c ∈ JCK.
By induction we have : v[u1/x1, . . . un/xn, c/xn+1] ∈ JDK
This is exactly : v[u1/x1, . . . un/xn][c/xn+1] ∈ JDK
By the lemma 23 of saturation: (λxn+1.v[u1/x1, . . . un/xn])c ∈ JDK
So λxn+1.v[u1/x1, . . . un/xn] ∈ JC (DK which is exactly (λxn+1.v)[u1/x1, . . . un/xn]) ∈ JC (DK.

15

Case 3 (π =(E). t = vw. t[~u/~x] = v[~u/~x]w[~u/~x]. Γ1 ` v : C (B and Γ2 ` w : C for some C where
Γ1,Γ2 are contexts included in the one in the conclusion, so v[~u/~x] ∈ JC (BK and w[~u/~x] ∈ JCK so
v[~u/~x]w[~u/~x] ∈ JBK.

Corollary 25 (Soundness of MΩ). If t is typable with a non trivial type in MΩ then it is head-
normalizable.

Proof. For some context Γ and some non trivial type A, Γ `MΩ t : A. By the adequacy lemma we know
that if we replace each xi (variable in the context) with itself, we obtain that t[x1/x1 . . . xn/xn] = t ∈ JAK
because by lemma 20 xi ∈ JAji K. Then by lemma 22 t is head-normalizable.

8 MΩ∗

8.1 Sequent calculus for IMLL

We don’t have the desired property of sub-
ject reduction in MΩ. In order to un-
derstand the behaviour of such a system
we will use the sequent calculus which is
in general simpler to analyse. The fig-
ure on the right describes the inference
rules for N -IMLL – the sequent calculus
of IMLL. Remark the common proper-
ties of non weakening and multiplicative
contexts.

ax
A ` A

Γ ` A ∆, A ` C
cut

Γ,∆ ` C

Γ, A ` B
(R

Γ ` A(B

Γ ` A ∆, B ` C
(L

Γ,∆, A(B ` C

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ, A,B ` C ⊗L
Γ, A⊗B ` C

1R` 1
Γ ` C 1L

Γ, 1 ` C

8.2 λL-IMLL : decoration of L-IMLL

The figure 8 describe the type system λL-IMLL decorating L-IMLL with λ-terms. This system is
nothing more than the sequent calculus version of the decoration MΩ of the N -IMLL the natural
deduction of IMLL: the decoration is canonical with respect to MΩ – and also to usual decoration of
sequent calculus for the simple types – in order to eventually describe the same type system.

ax
x : A ` x : A

Γ ` t : A ∆, x : A ` u : C x#Γ
cut

Γ,∆ ` u[t/x] : C

Γ, x : A ` t : B x#Γ
(R

Γ ` λx.t : A(B

Γ ` t : A ∆, x : B ` u : C x#∆
(L

Γ,∆, y : A(B ` u[yt/x] : C

Γ ` t : A ∆ ` t : B ⊗R
Γ,∆ ` t : A⊗B

Γ, x : A, y : B ` t : C x, y#Γ ⊗L
Γ, z : A⊗B ` t[z/x, y] : C

1R` t : 1
Γ ` u : C 1L

Γ, x : 1 ` u : C

Figure 8: λL-IMLL : decoration of L-IMLL

8.3 MΩ = λL-IMLL

Lemma 26 (MΩ ⊆ λL-IMLL). If Γ `MΩ t : A then Γ `λL-IMLL t : A.

Proof. The axiom rules in both system are the same and all introduction rules inMΩ are the right rules
in λL-IMLL with the same decoration. The figure 9 describe proofs the elimination rules of MΩ in
λL-IMLL. The inclusion is then straightforward.

16

Γ ` u : 1
∆ ` t : C 1L

∆, x : 1 ` t : C
1E := cut

Γ,∆ ` t : C

Γ ` t : A(B
∆ ` u : A

ax
x : B ` x : B (L

∆, y : A(B ` yu : B
(E := cut

Γ,∆ ` tu : B

Γ ` u : A⊗B
∆, x : A, y : B ` t : C x, y#∆ ⊗L

∆, z : A⊗B ` t[z/x, y] : C
⊗E := cut

Γ,∆ ` t[u/x, y] : C

Figure 9: Provability of 1E ,(E ,⊗E in λL-IMLL

Lemma 27 (λL-IMLL ⊆MΩ). If Γ `λL-IMLL t : A then Γ `MΩ t : A.

Proof. The axiom rules in both type systems are the same and all right rules in λL-IMLL are the
introduction rules in MΩ with the same decoration. The figure 10 shows proof tree of MΩ proving the
cut rule and the left rules of λL-IMLL.

Γ ` t : A
1I` t : 1 ⊗I

Γ ` t : A⊗ 1

ax
x : 1 ` x : 1 ∆, x : A ` u : C

1E
∆, x : A, x : 1 ` u : C x#Γ

cut := ⊗E
Γ,∆ ` u[t/x] : C

ax
y : A(B ` y : A(B Γ ` t : A

(E
Γ, y : A(B ` yt : B ⊗I(−, 1I)

Γ, y : A(B ` yt : B ⊗ 1

∆, x : B ` u : C
1E(ax,−)

∆, x : B, x : 1 ` u : C x#∆
(L:= ⊗E

Γ,∆, y : A(B ` u[yt/x] : C

ax
z : A⊗B ` z : A⊗B Γ, x : A, y : B ` t : C x, y#Γ⊗L := ⊗E

Γ, z : A⊗B ` t[z/x, y] : C

ax
x : 1 ` x : 1 Γ ` u : C1L := 1E

Γ, x : 1 ` u : C

Figure 10: Provability of cut,(L,⊗L, 1L in λL-IMLL

8.4 MΩ∗ as a λL-IMLL subsystem

The counter example to the subject reduction in MΩ suggests the free usage of ⊗-types can affect
important properties of the type system. We then define a subsystemMΩ∗ of λL-IMLL where the left
introduction of the function type has an extra constraint: B cannot be a intersection (⊗ or 1).

Γ ` t : A(B ∆, x : B ` u : C x#∆ B 6= 1, ⊗
(L

Γ,∆, y : A(B ` u[yt/x] : C

17

8.5 Subject reduction, expansion

Definition 28. A sequent Γ is ⊗-free if no formula in Γ has the tensor ⊗ or the unit 1 as the top-level
connective.

Lemma 29 (Subject reduction). Let Γ ` t : A and t→β t
′, then Γ ` t′ : A.

Proof. We prove the following lemmas by induction on the proof of the typing judgment:

Lemma 30 (arrow). If Γ ` λx.t : A(B, then Γ, x : A ` t : B.

Lemma 31 (tensor). If Γ, x : A⊗B ` t : C, then Γ, x : A, x : B ` t : C.

Lemma 32 (splitting). If Γ ` t : A ⊗ B and Γ are ⊗-free, then there exist Γ1 and Γ2 with Γ = Γ1,Γ2

such that Γ1 ` t : A and Γ2 ` t : B.

Lemma 33 (application). If Γ ` tu : B and Γ, B are ⊗-free, then there is a type A such that Γ1 ` t :
A(B and Γ2 ` u : A, with Γ = Γ1,Γ2.

We consider only ⊗-free contexts and types Γ, A. By the following properties provable by induction
on the derivations on the proofs. Then we proceed by induction on t. If t is an abstraction we apply the
lemma 30 and we conclude by induction hypothesis. If t = uv and t′ = u′v′ with u →β u

′, or t′ = uv′

with v →β v
′, we apply the lemma 33 and we conclude easily by induction hypothesis. Finally the case

t = (λx.s)u and t′ = s[u/x] is obtained applying the lemma 33 to (λx.s)u, then the lemma 30 to λx.s
and finally we the typing of s[u/x] by a cut rule.

Lemma 34 (Subject expansion). Let Γ ` t : A and t′ →β t, then t′ : A.

Proof. We prove the following lemma by induction on t. The abstraction (resp. application) case is
deduced by the abstraction (resp. application) lemma and the induction hypothesis. In the application
case we in fact have A1 and A2 by induction hypothesis, and we define A = A1 ⊗A2.

Lemma 35 (substitution). Let Γ ` t[u/x] : B and Γ, B ⊗-free, then there is A such that Γ1, x : A ` t : B
and Γ2 ` u : A and Γ = Γ1,Γ2.

Then by induction on t as lemma 29, using lemma 35 for the base case (t = u[v/x] and t′ =
(λx.u)v).

8.6 Completeness, soundness

Lemma 36 (Typing HNF in MΩ∗). If t is in head normal form, there Γ `MΩ∗ t : A with for some
context Γ and some non trivial type A

Proof. We use the same typing than used in the proof of the lemma 10 as there is no ⊗/1 types in any
right part of any type.

Theorem 37 (Completeness of MΩ∗). If t is head normalizable, then Γ `MΩ∗ t : A with for some
context Γ and some non trivial type A

Proof. This directly follows the subject expansion lemma 34 and the typing of head normal forms
(lemma 36)

Theorem 38 (Soundness of MΩ∗). If Γ `MΩ∗ t : A for some non trivial type A then t is head-
normalizable.

Proof. MΩ∗ ⊆ λL-IMLL (subsystem) and λL-IMLL ⊆MΩ by lemma 27 then t is head-normalizable
(lemma 25)

18

9 Conclusion

9.1 Results

Considering non idempotent intersection in intersection type systems has led to manipulating a system
(R) which has some desired properties for a type system : subject expansion, subject reduction and char-
acterization of several classes of normalization (HN , WN , SN). Then we have related non idempotent
intersection with the tensor of linear logic by building a type system which is to IMLL what DΩ is to
NJ .

If the type system MΩ indeed characterizes head-normalizable terms it does not have the expected
property of subject reduction. We remark that this is due to a phenomenon of sharing, already observed
and discussed in [BT04, CDLRDR05] for IMELL. In fact, as a typing system, IMELL does not enjoy
subject reduction either. The solution proposed by Baillot and Terui [BT04], which is inspired by [Bar96],
is very similar to what happens in the system R: the type grammar is restricted so that certain types
(exponentials in the case of IMELL, tensors in the case of IMLL) cannot appear on the right side of an
arrow. Our system MΩ∗ achieves the same effect by constraining the typing rules, instead of the types.

9.2 Future work

During the internship the following problems came up among others and we were unable to solve them
all.

9.2.1 Soundness for MΩ∗

The property of soundness in MΩ∗ is proven thanks to realizability arguments through another type
system. Maybe there is a way to bound the length of the reduction sequences as we did for the system
R.

9.2.2 Subject expansion for MΩ

We do not know if the subject expansion is satisfied in the systemMΩ. The fact the subject reduction is
false in MΩ may question the validity of subject expansion. However these properties are independent
from each other.

9.2.3 Weaker subject reduction for MΩ

Subject reduction is false in MΩ, but there is a sharing phenomenon generated by the intersection and
we could wonder if a weaker subject reduction is satisfied:

Suggestion 39 (Weak subject reduction inMΩ). If Γ `MΩ t : A and if t→ t′ then there exists t′′ such
that t′ →∗ t′′ and Γ `MΩ t′′ : A

9.2.4 MLL’s cuts for subject reduction

We have already the following result:

Proposition 40 (Cut-free normal form). π :: Γ `MΩ t : A and A is not trivial and π is cut-free then t
is in head normal form.

In MΩ, we define a cut as (E (resp. ⊗E) of which the left subtree is a tree of right ⊗Es and 1Es
eventually followed by (I (resp. ⊗I).

Maybe there is a way to avoid realizability arguments to prove the soundness ofMΩ by linking steps
of reduction to cuts in IMLL and using the cut elimination in MLL.

19

9.2.5 MELL, MLL and approximation theorem

Suggestion 41 (Approximation theorem). If Γ `IMELL A where there are m (resp. n) occurrences of
! in Γ (resp. A), then, for all integers p1, . . . , pn, there exist integers q1, . . . , qm such that Γ′ `IMLL A

′,
where Γ′ (resp. A′) is Γ (resp. A) obtained by replacing the ith occurrence of ! with !qi (resp. !pi). (where
!nA := A⊗ · · · ⊗A (n times)).

From time to time this property had been intimately near the properties of the intersection type
systems we considered. We can relate DΩ (and the associated of contraction and weakening) to IMELL
and MΩ (with no such properties) to MLL and then relate the approximation theorem above to a
possible embedding of type system DΩ in MΩ.

References

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
Dapt. of Computer Science, University of Edinburgh, 1996.

[BBdPH93] P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland. A term calculus
for intuitionistic linear logic. In TLCA, pages 75–90, 1993.

[BDC95] Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types:
Syntax and semantics. Information and Computation, 119:202–230, 1995.

[BT04] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda-calculus. In Proceedings of LICS’04, pages 266–275, 2004.

[Car07] Daniel De Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD thesis,
Université Aix-Marseille II, France, 2007.

[CDC78] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms.
Archive for Mathematical Logic, 19(1):139–156, 1978.

[CDC80] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. Formal Logic, 21(4):685–693, 1980.

[CDLRDR05] Paolo Coppola, Ugo Dal Lago, and Simona Ronchi Della Rocca. Elementary affine logic
and call-by-value lambda-calculus. In Typed Lambda Calculi and Applications, 7th Inter-
national Conference, Proceedings, 2005. To appear.

[Hin84] J. Roger Hindley. Coppo-dezani types do not correspond to propositional logic. Theor.
Comput. Sci., 28:235–236, 1984.

[Kri93] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood, Upper Saddle
River, NJ, USA, 1993.

[Sal80] Patrick Sallé. Une généralisation de la théorie des types en λ-calcul. RAIRO: informatique
théorique, 14(2):143–167, 1980.

[Tro95] A. S. Troelstra. Natural deduction for intuitionistic linear logic. Ann. Pure Appl. Logic,
73(1):79–108, 1995.

20

