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Le contexte général

Le π-calcul est un modèle pour les systèmes concurrents et un exemple de calcul de processus,
sa particularité étant d’être par passage de nom. C’est un modèle très expressif, et en particulier
Turing-complet: plusieurs encodages du λ-calcul vers le π-calcul existent, tout d’abord par Milner
dès l’introduction du π-calcul [Mil92], puis des approches unifiées selon les stratégies d’évaluation,
par Sangiorgi et Walker [SW01]. D’un autre côté, le π-calcul jouit d’une dualité entrée/sortie dans
un certain fragment décrit par Sangiorgi [San96], Boreale [Bor98] ou encore Merro [MS04].

Le problème étudié

Généralement les encodages λ vers π existants étaient dans une certaine mesure plus orientés
entrée que sortie, c’est à dire que les fonctions encodées sont reliées à un canal de retour qui est
utilisé en tant que canal réceptif. Mais plus récemment, certains encodages [vBV09], [vBV10] se
révélèrent d’orientation inverse. La question de la dualité entrée/sortie entre ces encodages se pose
alors naturellement, mais malheureusement ils ne font pas partie du fragment dualisant du π-calcul,
donc cette remarque n’a même pas de formulation précise.

Une telle dualité permettrait de mettre en évidence les caractéristiques communes à de tels
encodages, donc dans une certaine mesure étudier les caractéristiques nécessaires à un fragment du
π-calcul pour obtenir l’expressivité calculatoire du λ-calcul.

La contribution proposée

Les encodages de λ vers π ont une image qui n’est pas dans le fragment symétrique de π qu’on
peut dualiser, qu’on appelle πI. Des traductions d’un fragment de π vers une extension de πI
existent, mais ce fragment est trop petit pour les encodages.

Dans un premier temps on ajoute alors à πI un cas particulier de définition récursive, des liens
qui ont la capacité de gérer à la fois des canaux réceptifs et des canaux émetteurs. Ainsi, on montre
que cette extension de πI a une expressivité suffisante pour considérer les encodages de λ vers π,
qui sont alors dans une certaine mesure duaux l’un de l’autre, par l’intermédiaire de la traduction
de π vers πI.

Les propriétés de la traduction ont mis à rude épreuve les définitions du typage, des liens et de
la traduction elle-même, ainsi que les notions mêmes d’équivalence mises en jeu dans le résultat.
Finalement chaque contre-exemple raffinait le fragment candidat pour la traduction dans πI, si bien
qu’on a ajouté au π-calcul des contraintes de typage puis d’asynchronie partielle.



Dans un deuxième temps, comme la dualité dans l’extension de πI existante n’est pas totalement
satisfaisante, on introduit une extension πw de π qui contient un nouvel opérateur, le fil. Après
l’étude de ce calcul on peut alors traduire πw dans son fragment dualisant πwI, dans lequel la
dualité des encodages de λ vers π s’exprime plus naturellement.

Les arguments en faveur de sa validité

L’expressivité de l’extension de πI considérée premièrement se manifeste par une traduction
de π vers πI, qui jouit en fait d’une propriété de full abstraction. Ce résultat fait que la dualité
dans πI induit une notion de dualité dans π, qui est celle dont on avait besoin initialement. Cette
full abstraction traite d’équivalences manipulant d’une façon particulière les noms, à la manière de
[MS04], mais il reste encore à éclaircir un point technique dans sa preuve.

L’extension πw considérée deuxièmement est en revanche plus satisfaisante, car la traduction de
πw dans πwI n’introduit pas les liens qui sont des processus techniquement encombrants impliqués
dans πI. On a étudié ici la théorie de πIw qui permet alors de s’approcher plus vite d’une réponse
définitive à la question, mais elle doit encore devenir un peu plus mature pour établir une dualité
qui a du sens.

Le bilan et les perspectives

Il reste bien sûr à régler le point technique de la traduction de π vers πI.
Il reste également à développer la théorie de πw, ainsi que celle de πwI, même indépendamment

des questions de dualité qui nous intéressaient ici. On aimerait notamment comparer les expres-
sivités de πwI et de π.

Enfin des travaux connexes suggèrent d’étudier les liens avec le calcul des fusions de [PV98], les
equators de [Mer99], les types de [BHY05], l’utilisation des linear forwarders dans [GLW03] et les
autres encodages de [Vas05]. On développe ces liens en section 6.1.
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1 Introduction

The π-calculus is a model for concurrent systems. It is a process calculus that can pass names.
This name-passing process calculus have the particularity to be able to express the λ-calculus
and thus is Turing-complete. However some aspects of name-passing may not be needed for this
expressiveness and we would like to determine which they are. Moreover there are several ways
to encode the λ-calculus into the π-calculus. The usual encodings consider functions as receiving
processes, but [vBV10] introduced an encoding based on functions as outputs. The latter appears
similar to one of the formers, apart from the orientation of the channels which seems switched. We
may want to express the fact that there are dual to each other, but the present tools for duality do
not allow us to formulate such a statement.

We will broaden the expressiveness of the dualizing fragment of the π-calculus by translating a
bigger fragment of the π-calculus into it in order to express the notion of duality.

1.1 Process calculi

The π-calculus is a name-passing process calculus and a common model for concurrent systems.
Its processes are terms described by the following grammar, reminded as a convention for notations.
The terminal a range over a countable set of names and x̃, b̃ are tuples of names.

P ::= 0 | P |P | a(x̃).P | a〈b̃〉.P | (νa)P | !a(x̃).P

We will also sometimes use the following term constructors:

P ::= · · · | a(x̃) : P | a(b̃).P | a(b̃) : P

On these terms we consider the usual operational semantics defined by the usual late labelled
transition system: (where α means any replicable prefix, i.e. a(x) or a(x) for future calculi that
will allow it)

P
ab−→ P ′ Q

a(x)−→ Q′

P | Q τ−→ P ′ | Q′[b/x]
comml

P
a(b)−→ P ′ Q

a(x)−→ Q′

P | Q τ−→ (νb)(P ′ | Q′[b/x])
closel

P
µ−→ P ′ bn(µ) ∩ fn(R) = ∅
P | R µ−→ P ′ | R

parl
P

µ−→ P ′ x 6∈ n(µ)

(νx)P
µ−→ (νx)P ′

new

P
ax−→ P ′ a 6= x

(νx)P
a(x)−→ P ′

open

α.P
α−→ P

pre
!α.P

α−→ P | !α.P
bang

We will also also use the delayed input, noted a(x̃) : P which has less restrictions than the usual
input prefix, and also authorizes both actions through the prefix and communications between the
prefix and the suffix:

α : P
α−→ P

Din
P

µ−→ P ′ bn(α) 6∈ n(µ)

α : P
µ−→ α : P

Dact

P
a(b)−→ P ′

a(x) : P
τ−→ (νb)P [b/x]

Dcomm
P

a(b)−→ P ′

a(x) : P
τ−→ (νb)P [b/x]

Dclose
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We will consider several fragments of the π-calculus. We keep a list of the calculi we use in
appendix A.1.

• Aπ, the asynchronous π-calculus, is the subset of the π-calculus where outputs are always
followed by the null process: ab.0 (ab for short).

• Lπ, the localized π-calculus, the subset of π with the restriction that a process receiving a
name cannot use it in input subject position

• ALπ = Aπ ∩ Lπ

1.2 λ-calculus and evaluation strategies

The λ-calculus is a model of computation based on term substitution, we recall its grammar,
where x ranges over a countable set of variables, and the β-reduction, where M [n/x] means M
where all occurrences of x are replaced by N :

M ::= λx.M |MM | x

(λx.M)N →β M [N/x]

The β-reduction can take place anywhere in the term and this forms a rewriting system. If we
restrict this to one or less locations, we get an evaluation strategy. In the following we will use the
call-by-name strategy:

M →β M
′

MN →β M
′N (λx.M)N →β M [N/x]

And we will also use the strong call-by-name, or spine, i.e. call-by-name in addition to the following
rule. In this system β-reductions can take place under λ-abstractions. Note that it is not an
evaluation strategy, as the term (λz.(λx.x)z)y has more than one derivative.

M →β M
′

λx.M →β λx.M
′

1.3 Encodings of λ into π

The first encoding of the λ-calculus into the π-calculus was conceived by Robin Milner [Mil92].
Given a λ-term M and a name p, it builds a process that can be called on the channel p representing
the function M . We will call p the return channel. The arguments of this call are x, the argument
of the function and q, the return channel for the result of the encoding.

Jλx.MKMp = p(x, q).JMKMq
The body of the function can ask for its argument x to be evaluated to the channel p:

JxKMp = xp

The function application uses these definitions to call the function M on q, asking to put the
result on p, and giving the fresh name x for the argument. Then each time the body of the function
M asks for its argument on some channel r, the replicated “argument server” will answer to it:
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JMNKMp = (νq)(JMKMq | (νx)(q〈x, p〉.!x(r).JNKMr ))

These three equations define an encoding of the λ-calculus with the call-by-name evaluation
strategy [Mil92]. There exist also slightly more verbose encodings of call-by-name λ-calculus de-
scribed in [SW01] that are easier to study, since they are in Lπ:

Jλx.MKNp = p(y).y(x, q).JMKNq
JxKNp = xp

JMNKNp = (νq)(JMKNq | q(y).(νx)(y〈x, p〉.!x(r).JNKNr ))

The only difference is that the return name is used to send a fresh name y representing a pointer
to the function that waits for the argument channel and the return channel.

In those two encodings a prefix input prevents the evaluation under the λ-abstraction. Replacing
this prefix input by a delayed input will have the direct consequence on the translated evaluation
strategy: call-by-name becomes strong call-by-name. We note J·KMS Milner’s encoding with this
small modification on the abstraction:

Jλx.MKMSp = p(x, q) : JMKMSq

and we note J·KNS similarly:

Jλx.MKNSp = p(y) : y(x, q) : JMKNSq

Output-based encodings All the previous encodings, as well as the uniform encodings seen
in [SW01] (which interpret other evaluation strategies), represent functions as receiving processes:
they begin by an input. [vBV10] builds an new encoding noted here J·KOp where functions are
represented by emitting processes, so this encoding is new and not input-based like the others:

JxKOp = x(p′).p′ _ p

Jλx.MKOp = p(x, q) : JMKOq
JMNKOp = (νq)(JMKOq | q(x, p′).(p′ _ p | !x(r).JNKOr ))

Where a _ b, called a finite link, is short for a(x).bx.
However we remark here that this encoding is close to Milner’s encoding, the main difference

is that inputs and outputs seem to have been inverted. There are other differences, though: one
cannot invert inputs and outputs in a free output. We observe that the process corresponding
to the free output xp is x(p′).p′ _ p, an input followed by a link. This link connects the name
supposed to be the object of the output to the received name. We can observe this mechanism in
the encodings of the variable and of the application.

This encoding is introduced in [vBV10] with a type system and Curry types. One of its purposes
is to relate the π-calculus to Curry types and both intuitionistic and classical logic. We ignore this
type system and these aspects in this report and we focus on the encoding itself.
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2 i/o types and internal mobility

In this section, we present tools and notions we will use in the following of this report. Expan-
sion relations (section 2.1) refine the notion of bisimulation and allow proof techniques on weak
bisimulations. i/o types (section 2.2) allow a tighter control on the source language. The fragment
πI (section 2.3) will be used as the dualizing fragment of π.

2.1 Bisimulations and expansions

We call the processes P ′ such that P
µ−→ P ′ for some label µ the derivatives of P . We define

the following transition relations:

• =⇒ is
τ−→
∗
, the reflexive transitive closure of

τ−→

• µ
=⇒ is =⇒ µ−→=⇒

• µ̂
=⇒ is =⇒ (if µ = τ) or

µ
=⇒ (otherwise)

• µ̂−→ is
τ−→ ∪ = (if µ = τ) or

µ−→ (otherwise)

• µ←− (resp.
µ⇐=, . . . ) is the inverse relation of

µ−→ (resp.
µ

=⇒, . . . )

• RS is the composition of R and S i.e. {(a, c) ∃b, aRb ∧ bSc}

Definition 2.1. A strong bisimulation on a set of processes P is a relation R on P such that, for
all action µ, (

µ←− R) ⊆ (R µ←−) (i.e. whenever PRQ and P
µ−→ P ′, there is a Q′ such that P ′RQ′

and Q
µ−→ Q′) and (R µ−→) ⊆ (

µ−→ R) (i.e. whenever PRQ and Q
µ−→ Q′, there is a P ′ such that

P ′RQ′ and P
µ−→ P ′). The strong bisimilarity ∼ is the union of all strong bisimulations.

Definition 2.2. A weak bisimulation on a set of processes P is a relation R on P such that, for
all action µ, (

µ←− R) ⊆ (R µ⇐=) and (R µ−→) ⊆ (
µ

=⇒ R). The weak bisimilarity ≈ is the union of
all weak bisimulations.

Definition 2.3. A expansion on a set of processes P is a relation R on P such that, for all action

µ, (
µ←− R) ⊆ (R µ⇐=) and (R µ−→) ⊆ (

µ̂−→ R). . is the union of all expansions.

Informally P . Q means that Q behaves like P but can do more τ -transitions than P can. It
is an asymmetric intermediate between strong and weak bisimilarities: ∼ ( . ( ≈.

2.2 i/o types

Types are usually used to prevent runtime errors, like arity mismatches in polyadic π-calculus.
Types usually provide some roles to variables, terms or processes in order to categorize them. The
i/o type systems assign input and output roles for the name in the π-calculus.

The following type system, which we will refer to as πio, is inspired from the standard i/o types
described in [PS96]. The type constructor #T (a subtype of iT and oT ) is now allowed only when
introduced by a restriction (νa)P . The type of x in a(x).P will be a strict type, i.e. only composed
of is and os.
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The strict types (T ) are defined below. µ is a fixed point constructor and allows “infinite”
types (finite types defined by the grammar below quotiented by the smallest congruence relation
containing µx.T = T [µx.T/x]). The non-strict types S have also one hybrid constructor # at
top-level, #T meaning both iT and oT .

T ::= iT̃ | oT̃ | µx.T (1)

S ::= T | #T̃ (2)

The typing judgments are of the form Γ ` P for the processes and Γ ` x : S for the names,
where Γ is a context, represented by a finite map from the names to the non-strict types. There is
no implicit subtyping except for the names: the types of the form #T are used to type names in
the context and the inference rules for names can only change the head of the type:

Γ(x) ∈ {iT,#T}
Γ ` x : iT

Γ(x) ∈ {oT,#T}
Γ ` x : oT

The rules to type processes against contexts are the usual rules for the parallel operations (where
α is as usual a(x) or a(x)):

Γ ` 0
Γ ` α.P
Γ ` !α.P

Γ ` P1 Γ ` P2

Γ ` P1 | P2

The interesting rules are about name manipulation. They are different from the usual rules
about the kind of the types of the names, i.e. whether they are strict or not: the names introduced
by the restriction may not be strict, but the variables introduced by an input have to.

Γ, a : #T ` P
Γ ` (νa)P

Γ ` a : oT Γ ` v : T Γ ` P
Γ ` a〈v〉.P

Γ ` a : iT Γ, x : T ` P
Γ ` a(x).P

Γ ` a : iT Γ, x : T ` P
Γ ` a(x) : P

We will consider πio as a calculus itself, since this type system is preserved by any labelled
reduction. Moreover Lπ is a subcalculus of πio:

Lemma 2.1 (Subject reduction). If Γ ` P and P
µ−→ P ′ then Γ′ ` P ′ (with dom(Γ′) = dom(Γ) +

bn(µ))

Proof in appendix A.3.

Lemma 2.2 (Lπ ⊂ πio). If P is a process of Lπ, then P is typable in πio with the type #oω, where
oω := µT.oT :

fn(P ) : #oω ` P

Proof in appendix A.3.
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2.3 Internal mobility

πI In the π-calculus the main operational rule a〈b〉.P | a(x).Q
τ−→ P | Q[b/x] involves carrying

names – from the emitting process to the receiving process – and aliasing, making it less simple
than CCS at an implementation level. An intermediate solution is the π-calculus with internal
mobility [San96] which allows only the emission of private names. Internal mobility mainly relies
on α-conversion, which is easier to manipulate than global names.

This calculus, called πI, is the full π-calculus with the constrain that every output ab.P is bound
or private, that is, preceded by (νb). We will use the shortcut a(b).P for (νb)ab.P . The grammar
of πI is then as follows:

P ::= 0 | P |P | (νa)P | a(x̃).P | a(b̃).P | !a(x̃).P | !a(x̃).P

πI, as well as its operational semantics, enjoy a duality between inputs and outputs. Namely,
if a(x) = a(x), a(x) = a(x), τ = τ for both prefixes and labelled transitions, then

P
µ−→ P ′ iff P

µ−→ P ′

Links [Bor98] shows that πI can fully express the asynchronous localized π-calculus, ALπ. This
result requires the introduction the links – which are a special case of recursive definition – to
transform a free output prefix into a bound output prefix.

A link is recursively defined as follows (The shortcut ỹ ↪→ x̃ stands for y1 ↪→ x1 | y2 ↪→ x2 | . . . ):

a ↪→ b := !a(x̃).b(ỹ).ỹ ↪→ x̃

The cardinality of x̃ and ỹ is determined by the arity of a, with the help of the environment.
This is possible if the polyadic π-calculus is sorted. For a calculus that is not sorted, we would
need an infinite product of links, one for every possible arity.

In order to simulate a free output of a process not in πI, the role of the link is to connect the
name supposed to be sent to the new and private name of the bound output in πI, so ab will be
transformed into the πI process a(x).x ↪→ b.

Translation of ALπ into πI These links allow the definition of this translation [Bor98] from
ALπ to πI, which is non-trivial only for the (asynchronous) output.

J0KIAL = 0 JP | QKIAL = JP KIAL | JQKIAL J!α.P KIAL = !Jα.P KIAL

Ja(x̃).P KIAL = a(x̃)JP KIAL Ja〈b̃〉KIAL = a(x̃).x̃ ↪→ b̃ J(νa)P KIAL = (νa)JP KIAL
This translation is proven to be a full abstraction for some notion of barbed bisimilarity in

[Bor98] and for some notion of bisimilarity in [MS04]. For the curious reader, the appendix A.2
explains in details how the links work inside the translation.

Limitations These links allow a translation from ALπ to πI. They allow the encoding of the
transmission of the output capability over the channels: in ab | a(x).P as x cannot be used in input
subject position in P . Typing the fragment ALπ amounts to always giving the type oω or #oω to
any name. We would like to also translate the transmission of the input capability into πI. This
would let us consider processes with richer i/o types, for example some encodings of the λ-calculus
into the π-calculus that are not in ALπ.
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3 Generalizing the translation from ALπ to πI

From now on we will generalize the existing translation, with ALπ as source language, to obtain
a translation with πio as source language. The following contains most of the contributions of the
internship.

3.1 Definitions

3.1.1 Dualizing links

Adapting the translation into πI to i/o-typed processes brings some difficulties. For example,
one needs to consider a(x).P even when x is used in input subject position in P , so the usual link
would not work. Indeed the link cannot communicate with an input since it starts with one. For
example, with P = x(z).0 (the first line is the expected behavior, the second is the (bad) attempt
of translation):

ab | a(x).x(z).0
τ−→ b(z).0

b(z)−→ 0

a(y).y ↪→ b | a(x).x(z).0
τ−→ (νy)(y(u).b(v).u ↪→ v | y(z).0) 6→

The immediate conclusion is that the way the passed name is used, that is, as an input or an
output, is very significant for building the corresponding link.

We introduce a different type of link that depends on a given type T that has to be strict1:

a
oT1
↪→ b := !a(x).b(y).y

T1
↪→ x

a
iT1
↪→ b := !a(x).b(y).x

T1
↪→ y

Like the links used in the translation from ALπ into πI, these links are always infinite processes.
Unlike them, they have a replicated bound output in addition to the replicated input, but that
goes well with the duality in πI. Note that the definition of the link that is used in the translation

of ALπ into πI corresponds to this definition with the type oω: ↪→ =
oω

↪→.

Remark 3.1 (Polyadicity). We can easily adapt the definition to a polyadic calculus by replacing
the link in the suffix by a product of links, depending of the type. For example:

a
o(T1,T2)
↪→ b := !a(x1, x2).b(y1, y2).(y1

T1
↪→ x1 | y2

T2
↪→ x2)

3.1.2 πio to πI

Source and target calculi The translation into πI aims to be as general as possible, but the
types of πio are needed for the links. The source language of the translation will be πio with both
delayed and usual input prefixes, as well as synchronous outputs. Both input prefixes and bound
output prefixes can be replicated.

The target calculus is πI also with both delayed and usual input prefixes, as well as synchronous
(bound) outputs. Both bound output and input prefixes can be replicated, and we authorize
recursive definitions (or just links).

1a strict type contains no #T , see equation (1) for the grammar of strict types
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The translation itself The translation is essentially the same as the one from ALπ to πI [Bor98].
The main difference is that this one have to take into consideration the fact that the translated
processes are typable in πio, so the translation would have a second argument that is the typing
derivation of the considered process.

In the type system πio from a derivation tree for a given process we can always easily recover a
derivation tree for any of its subterms. Thanks to this compositionality, we will consider the typing
derivation an implicit argument.

J0KIio = 0 JP | QKIio = JP KIio | JQKIio J!α.P KIio = !Jα.P KIio

Ja(x̃).P KIio = a(x̃)JP KIio Ja〈b̃〉.P KIio = a(x̃).(x̃
T̃
↪→ b̃ | JP KIio) J(νa)P KIio = (νa)JP KIio

The only difference with J−KIAL is in the translation of the free output: the output can be
synchronous, and the link needs a list of strict types. These types are the remaining of the type
T (a) of a in the typing derivation without its top-level connective. Namely: T̃ if T (a) = #T̃ or
T (a) = oT̃ . The derivation also provide the fact that the arity of T̃ is the same as the arity of b̃.

As said before, the links ↪→ that are used in J−KIAL are a special case of our links: ↪→=
oω

↪→.
Therefore on Lπ the two translations coincide, since Lπ ⊂ πio.

An optimization However, the translation of (νb)ab.P can be a(b).JP KIio instead of the naive

translation (νb)a(b′).(b′
T
↪→ b | JP KIio), since the output is already bound. We will also consider an

optimization for such cases:
J(νb)ab.P K′Iio = a(b).JP K′Iio

And JP K′Iio is defined like JP KIio each time P does not match this pattern. The advantage of this
optimization, apart from the lightness, is that the link will not induce asynchronous behaviors in
the translated suffix JP K′Iio.

3.2 Properties of the translation

In order to prove a full abstraction theorem we will need several laws about this translation.
These laws are also used as sanity checks before investigating the final result. The transitivity law
is used each time a link interacts with another one in the translated processes. It is also is used in
the lemmas afterwards. The substitution lemma is the easiest way to develop a correct version of
the links, as it is simpler and more demanding than a result of full abstraction.

Lemma 3.1 (transitivity law). If b 6= a, c then

∀T a
T
↪→ c . (νb)(a

T
↪→ b | b T

↪→ c)

Proof in appendix A.3. We manually close the relation by the intended transitions.

We also need a replication law allowing the distributivity of a replicated process over parallel
composition, in order to distribute links over processes of the form P | Q.

Lemma 3.2 (replication law). If
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1. a is the subject of the prefix α

2. no derivative of P1 can communicate with a derivative of P2 about2 a

3. no derivative of R can make an action on a

then
(νa)(α.R | P1 | P2) ∼ (νa)(α.R | P1) | (νa)(α.R | P2)

Proof in appendix A.3. The corresponding relation is a strong bisimulation up to ν contexts.

Corollary 3.1. If b is fresh, T is a strict type and Γ, a : T ` P1, P2 then

(νa)(a
T
↪→ b | JP1K | JP2K) ∼ (νa)(a

T
↪→ b | JP1K) | (νa)(a

T
↪→ b | JP2K)

Proof. The conditions of lemma 3.2 are checked. 1. and 3. are straightforward. For 2. either
T = oT̃1 or T = iT̃1. Either way P1 and P2 will only be able to receive or emit on a and not both,
so they will not communicate on a. And thanks to the fact that for all Q, JQK cannot send the
(free) name a, this also work for all their derivatives.

Then we can begin to tackle the substitution law which states that the parallel composition of
a link and a process behaves like the latter in which we replaced the source of the link by its target.

We first define the notion of a substitutable name in a given process.

Definition 3.1. The substitutability of a in P (P / a) is the smallest predicate satisfying the
following rules.

0 / a

P / a Q / a

P | Q / a

α.P / a

!α.P / a

P / a P / x

a(x) : P / a ab / a

c 6= a P / a

cb.P / a

c 6= a P / a

c(x).P / a

c 6= a P / a

c(x) : P / a

In short a is substitutable in P if it does not appear in synchronous subject position or in
non-delayed input subject position. But in the case of a(x) : P , substituting a with a link will lead
to substitute x in P with another link, so we request the substitutability of x in P .

Several results in the following are based on the following lemma, but its proof is not complete.
For clarity we add a star (*) on results with incomplete proofs and all the results depending on
them.

Lemma 3.3 (substitution law*). If a is substitutable in P , let T be any type for which there exists
Γ such that Γ, a : T ` P . Then:

JP KIio[b/a] . (νa)(a
T
↪→ b | JP KIio)

Proof in appendix A.3. Proof sketch: By induction on the size of P , we prove that:
if (Γ, ã : T̃ ` P ) and (ã are substitutable in P ) then

JP K[b̃/ã] . (νã)(ã
T̃
↪→ b̃ | JP K)

b(x) : JP K . (νx)(b(y).x
T
↪→ y | JP K) if x ∈ ã

This proof is not complete, see details in appendix.

2i.e. with actions neither of subject a nor of object a
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3.3 Full abstraction

The usual method to prove that a translation is correct is to prove a full abstraction result.
The translation T : P1 → P2 is fully abstract for the equivalence relations =1 and =2 if, for all P
and Q, we have the following equivalence: (P =1 Q) iff (T (P ) =2 T (Q)).

The full abstraction is not directly possible for usual bisimilarities, since the translation intro-
duces links that never die. These links make it hard to relate two processes when one of them could
use a link to connect two names.

The following definition handles correctly the notion of bisimilarity in presence of links. Indeed
when an output occurs a link remain in the process. This bisimilarity is introduced in [MS04] and
we modify it to cope with the optimization of the translation: in Ja(b).P K = a(b).JP K then the
transition a(b) does not necesseraly imply a link.

Definition 3.2 (Semi link bisimilarity). A symmetric relation R is a semi-link bisimulation on
processes typable in πio if, whenever P R Q,

1. If P
τ−→ P ′ then Q =⇒ Q′ and P ′ R Q′

2. If P
a(x)−→ P ′ (x 6∈ fn(Q)) then

(a) either Q
a(x)
=⇒ Q′ and P ′ R Q′

(b) or Q =⇒ Q′ and P ′ R (Q′ | ax)

3. If P
ab−→ P ′, let T be tail(T (a)) and p be fresh, then:

(a) either Q
ad

=⇒ Q′ and (p
T
↪→ b | P ′) R (p

T
↪→ d | Q′)

(b) either Q
a(c)
=⇒ Q′ and (p

T
↪→ b | P ′) R (νc)(p

T
↪→ c | Q′)

(c) or Q
ab

=⇒ Q′ and P ′ R Q′

4. If P
a(c)−→ P ′, let T be tail(T (a)) and p be fresh, then:

(a) either Q
ab

=⇒ Q′ and (νc)(p
T
↪→ c | P ′) R (p

T
↪→ b | Q′)

(b) either Q
a(c)
=⇒ Q′ and (νc)(p

T
↪→ c | P ′) R (νc)(p

T
↪→ c | Q′)

(c) or Q
a(c)
=⇒ Q′ and P ′ R Q′

Where tail(T (a)) is the remaining of the type of a in the context when we remove its top-level
connective. P and Q are semi-link bisimilar (P ≈l Q) if they are related by some semi-link
bisimulation.

The following bisimilarity is the ground asynchronous bisimilarity but on translated processes.

Definition 3.3 (�a-bisimilarity). A symmetric relation R on processes of πI is a �a-bisimulation
if whenever P R Q:

1. If P
τ−→ P ′ then Q =⇒ Q′ and P ′ R Q′

12



2. If P
a(b)−→ P ′ (b 6∈ fn(Q)) then Q

a(b)
=⇒ Q′ and P ′ R Q′

3. If P
a(b)−→ P ′ (b 6∈ fn(Q)) then

(a) either Q
a(b)
=⇒ Q′ and P ′ R Q′

(b) or Q =⇒ Q′ and P ′ R (Q′ | JabK)

P and Q are �a-bisimilar if they related by some �a-bisimulation.

Lemma 3.4 (Step lemma*). Let P be in πio and that |c| is the type carried by the channel of
name c in the environment. (here, J·K represents J·KIio)

1. if P
a(b)−→ P ′ then JP K

a(b)−→& JP ′K

2. if P
τ−→ P ′ then JP K τ−→& JP ′K

3. if P
ab−→ P ′ then JP K

a(p)−→& (p
|a|
↪→ b | JP ′K) with p#P ′

4. if P
a(b)−→ P ′ then

(a) either JP K
a(p)−→& (νb)(p

|a|
↪→ b | JP ′K) with p#P ′

(b) or JP K
a(b)−→& JP ′K

Also:

1. if JP K
a(x)−→ P1 then P

a(x)−→ P ′ with P1 & JP ′K

2. if JP K
a(x)−→ P1 then

(a) either P
ab−→ P ′ with P1 & (x

|a|
↪→ b | JP ′K) with x#P ′

(b) or P
a(b)−→ P ′ with P1 & (νb)(x

|a|
↪→ b | JP ′K) with x#P ′

(c) or P
a(x)−→ P ′ with P1 & JP ′K

3. if JP K τ−→ P1 then P
τ−→ P ′ with P1 & JP ′K

Proof. The proof profusely relies on the substitution law 3.3 and the transitivity law 3.1, and is
proved by induction on the derivation of P

µ−→ P ′.

Lemma 3.5 (Full abstraction*). If P and Q are two processes typable in πio then

P ≈l Q iff JP K′Iio �a JQK′Iio

Proof. We show that Re is a �a-bisimulation up to & and ≈, then we show that Rd is a link
bisimulation.

Re = {(JP K′Iio, JQK′Iio) | P ≈l Q}

Rd = {(P,Q) | JP K′Iio �a JQK′Iio}
Assuming the step lemma 3.4 the proof follows the many cases of the definitions of �a and ≈l.
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4 From λ to πI

This translation from πio into πI needs some typing information in the source language. Fortu-
nately, the strong call-by-name version of Milner’s encoding J·KMS· and the encoding from [vBV10]
J·KO· are both typable in πio for any λ-term. For convenience we introduce the following tuple type:

γ := µX.(oiX, iX)

The translated terms are typable with respectively oiγ, iiγ for the variables of the λ-calculus and
iγ, oγ for the return types with respectively the encodings J·KMS· , J·KO· :

Lemma 4.1.

∀M ∀p fv(M) : iiγ, p : oγ ` JMKOp
∀M ∀p fv(M) : oiγ, p : iγ ` JMKMSp

These typability results enable translations into πI: both the usual translation J·KIio and its

optimized version J·K′Iio of these encodings are correctly defined. For the encodings to respect the
conditions of the full abstraction we privilege the optimized version.

JMKM
I
S

p := JJMKMSp K′I
io

JMKO
I

p := JJMKOp K′I
io

The translated encoding J·KM
I
S· is presented below. The free outputs are replaced with bound

outputs followed by links whereas the bound output on q in the case of the application is not
translated into a redundant link scheme thanks to the optimized version.

JxKM
I
S

p := x(p′).p′
iγ
↪→ p

Jλx.MKM
I
S

p := p(x, q) : JMKM
I
S

q

JMNKM
I
S

p := (νq)(JMKM
I
S

q | (q(x, p′).(p′
iγ
↪→ p | !x(r).JNKM

I
S

r ))

The translated encoding J·KOI· is slightly more complicated, since the encoding of a finite link

p′ _ p := p′(a, b).p〈a, b〉 is p′(a, b).Jp〈a, b〉KIio. But this proves to be exactly p′
oγ
↪→ p, so we simplify

the notation below:

JxKO
I

p = x(p′).p′
oγ
↪→ p

Jλx.MKO
I

p = p(x, q) : JMKO
I

q

JMNKO
I

p = (νq)(JMKO
I

q | q(x, p′).(p′
oγ
↪→ p | !x(r).JNKO

I
r ))
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Definition 4.1. The dual of a process of πI (with links) is defined as follows:

dual(a(x).P ) := a(x).dual(P ) dual(0) := 0

dual(a(x).P ) := a(x).dual(P ) dual(P | Q) := dual(P ) | dual(Q)

dual(a(x) : P ) := a(x) : dual(P ) dual(!α.P ) := !dual(α.P )

dual(a(x) : P ) := a(x) : dual(P ) dual((νa)P ) := (νa)dual(P )

dual(a
oT
↪→ b) := a

iT
↪→ b dual(a

iT
↪→ b) := a

oT
↪→ b

dual(·) is clearly self-inverse. It inverts inputs and outputs but on links we have a different

definition from what we could think. We do not have the expected correspondence P
µ−→ P ′ iff

dual(P )
µ−→ dual(P ′), because in the links we have

µ2−→ µ1−→ corresponding to
µ1−→ µ2−→.

a
ioT
↪→ b

a(x)−→ b(y)−→x(z)−→ y(t)−→ . . .

a
ooT
↪→ b

a(x)−→ b(y)−→ y(t)−→x(z)−→ . . .

However this definition of duality preserves the �a-bisimilarity:

Lemma 4.2 (dual() is �a-preserving*). For all P in πio,

JP K′Iio �a JQK′Iio iff dual(JP K′Iio) �a dual(JQK′Iio)

Proof. Work in progress. The dual processes of the links generate execution traces that are per-
mutations of the dual of the exectution traces of the links, so the correspondence is not straight-
forward.

The translation of the encodings are clearly dual of each other, in a syntactical manner:

Fact 4.1 (J·KM
I
S

p is dual to J·KOIp ). For all λ-term M, dual(JMKM
I
S

p ) = JMKOIp

A direct consequence of lemma 4.2 and the previous fact makes the two encodings induce the
same equivalence relation among λ-terms, proving that:

Corollary 4.1 (Same equivalence*). For all λ-terms M and N ,

JMKMSp ≈l JNKMSp ⇐⇒ JMKOp ≈l JNKOp

Remark 4.1. All lemmas and corollaries marked with a star (3.4, 3.5, 4.1) depends either on the
substitution law (3.3) or the soundness of the duality (4.2). Both lack a complete proof. In the
following, we bypass this problem by building a calculus where the duality is easier.

5 Wires

The links in πI are a specific construction to connect two existing names in a calculus where one
cannot send a free name. They are infinite recursive processes and quite heavy to handle. In order
to study πI and its expressiveness we will consider a calculus with a new operator that connects
names.
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The main idea is to add an operator {· = ·}, called a wire connecting two names, that adds an
equation label into the LTS, that can be persistent or not:

{a = b} a=b−→ {a = b} or {a = b} a=b−→ 0

and that renames (only) the subject of an action:

P
ac−→ P ′ Q

a=b−→ Q′

P | Q bc−→ P ′ | Q′

This wire operator could replace by simple processes the links which are infinite processes. That
could help us understanding the mechanisms behind the encodings from λ, but mainly this allows
us to build a calculus in which the translation into the fragment with internal mobility will be
much easier to study. With this more practical translation, the duality of the fragment will be
more workable.

The study of this calculus even for simple problems like ≡ ⊂ ∼ forces to introduce other labelled
transitions. For example consider the associativity in this example : {a = b} | a(x) | bc. In the first
case, a is wired to b and then communicates with bc. However in the other case a(x) should be able
to communicate with bc so we need to add a new kind of transition: an incomplete τ -transition,
noted τ/a = b, waiting for a wire:

P
ac−→ P ′ Q

b(x)−→ Q′

P | Q τ/a=b−→ P ′ | Q′
P

τ/a=b−→ P ′ Q
a=b−→ Q′

P | Q τ−→ P ′ | Q′

The example (a(x) | {b = c}) | ({a = b} | cd) shows that we also need to keep track of the wires
even beside the usual labels:

P
µ−→ P ′ Q

a=b−→ Q′

P | Q µ,a=b−→ P ′ | Q′

We also need multiple equations in labels, thanks to this example ((a(x) | {c = d}) | ({a =
b} | de)) | {b = c}. Note that this is important both to (τ/a = b)-transitions and usual a(x)- and
ab-transitions.

Also remark that with persistent wires the predicate P
a=b−→ P ′ implies that P ′ = P so we could

introduce a simpler predicate in the LTS that says “P can raise a wire a = b” but that would make
bisimulations definitions more complicated, so we stick with transitions that also allow ephemeral
wires.

5.1 πw, a π-calculus with wires

The calculus is now endowed with the wire operator:

P ::= · · · | {a = b}

We call this calculus πw. The labels of the LTS now feature connections between names: E is
called a connection (it is an equivalence relation on name), µ is called a connected label, β is called
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a simple label.

µ ::= β,E | (E)

β ::= a(x) | ab | a(x) | τ | τ/a = b

E ::= (a1 = · · · = an), . . . , (z1 = · · · = zm)

Then we present the inference rules for the labelled transition system of πw. All the rules for
the communication in the parallel composition of two processes have been merged into one to be
easier to understand and to study. This rule, comp, depends on the composition of two labels
µ1 and µ2 into a label and a two-hole ‘context’ that composes the processes and possibly applies
substitution3: µ1 ◦ µ2 = (µ,C[·, ·]), where C is of the form C = (νa)(·σ | ·σ′). (For convenience we
note `(µ,C) = µ and C(µ,C) = C) Note that The rule comp only applies when µ1 ◦ µ2 is defined.

{a = b} (a=b)−→ {a = b}
wire

P
µ1−→ P ′ Q

µ2−→ Q′

P | Q
`µ1◦µ2−→ Cµ1◦µ2 [P ′, Q′]

comp

P
µ−→ P ′ bn(µ) ∩ fn(R) = ∅
P | R µ−→ P ′ | R

parl
P

β,E−→ P ′ x 6∈ n(β)

(νx)P
β,E\{x}−→ (νx)P ′

new

P
ax,E−→ P ′ a 6= x

(νx)P
a(x),E\{x}−→ P ′

open

α.P
α,()−→ P

pre

!α.P
α,()−→ P | !α.P

bang

We can add rules using the connections to rename names, but really in the label (β,E) we
should consider the set of names quotiented by the equivalence relation E.

P
ac,E−→ P ′ aEb

P
bc,()−→ P ′

substout
P

a(x),E−→ P ′ aEb

P
b(x),()−→ P ′

substbout
P

a(x),E−→ P ′ aEb

P
b(x),()−→ P ′

substin

With the following definitions on connections:

• aEb if a and b belong to the same class in E.

• (E + F ) is the unification of the classes of E and F : E + F := (E ∪ F )∗

• (β • E) is defined as follows:

1. if β = (τ/a = b) and aEb, then τ, ()

2. (β,E) otherwise

And we define the composition of connected labels µ1 ◦ µ2, which is just the composition on
simple labels β1 ◦ β2 ‘connected by’ the sum on connection (E + F ).

◦ (E2) β2, E2

(E1) (E1 + E2) β2•(E1 + E2)
β1, E1 β1•(E1 + E2) (β1◦β2)•(E1 + E2)

3so it is more than a usual context – which cannot substitute names
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The application • just applies the connection E to the label and not the context:

(µ,C) • E = (µ • E,C)

And the composition ◦ on simple labels corresponds to the usual composition of labels, but here
we give the context in it:

a(x) ◦ bc := (τ/b = a), (·[c/x] | ·)
a(x) ◦ b(c) := (τ/b = a), (νc)(·[c/x] | ·)
ac ◦ b(x) := (τ/a = b), (· | ·[c/x])

a(c) ◦ b(x) := (τ/a = b), (νc)(· | ·[c/x])

◦ is not defined on any other kind of arguments.
We will work a lot with name substitution, so we will use the open bisimilarity:

Definition 5.1 (Open bisimilarity). A symmetric relation R is an open bisimulation if for all name

substitution σ, whenever P R Q and Pσ
µ−→ P ′, there exists Q′ such that Qσ

µ−→ Q′ and P ′ R Q′.
Two processes P and Q are open bisimilar, written P ∼o Q, if P R Q for some open bisimulation
R.

5.2 Behavioral laws and translation into πwI

This calculus does not automatically inherit the properties of the π-calculus, since it is a different
transition system.

Lemma 5.1 (≡ ⊂ ∼o). For all processes P,Q of πw, if P and Q are structurally equivalent then
P and Q are open bisimilar.

Proof in appendix A.3.

Lemma 5.2 (∼o is a congruence). For all C context of πw, if P ∼o Q then C[P ] ∼o C[Q].

Proof. By induction on C, the only difficult case if C = [·] | R, since the only non trivial rule to
apply is comp, we only have to validate it under the action of C and fortunately we work up to
substitution with the open bisimilarity.

Lemma 5.3 (Transitivity). For all a, c 6= b: {a = c} ∼o (νb)({a = b} | {b = c})

Proof. Straightforward: there is only one transition for each side (into the same processes).

Lemma 5.4 (Substitution law). For all a 6= b, even if b is not fresh:

P [b/a] ∼ (νa)({a = b} | P )

Proof. The corresponding relation is a strong bisimulation, there is no need to investigate P , only
its transitions4. We can then reduce the problem to proving that β•(E+(a = b))\{a} = (β•E)[b/a],
which is true.

4Except for proving that if P [b/a]
µ1−→ P1 then ∃µ, P ′ P µ−→ P ′ ∧ µ1 = µ[b/a] ∧ P1 = P ′[b/a]
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Definition 5.2 (From πw to πIw). The translation from πw into πIw is transparent on every
constructor but the free output, so we omit all the other cases.

Jab.P KπwIπw = a(b′).({b′ = b} | JP KπwIπw )

Lemma 5.5 (Full abstraction*).
P ∼o Q⇔ JP K ∼o JQK

Proof. Work in progress. Left to right is easy, but right to left seems to need other bisimilarities.

Definition 5.3. The dual P of a process P of πIw is the same process with a(x) replaced by a(x)
and vice versa. There is no modification for wires. The dual µ of an action µ is defined the same
way. (but the dual of ab,E is not defined)

Fact 5.1. P = P ; µ = µ ; P
µ−→ P ′ ⇔ P

µ−→ P ′

Then the only difference between JJ · KMSp KπwIπw and JJ · KOp KπwIπw is now the difference between

Ja(x).bxKπwIπw = a(x).b(y).{y = x} and {a = b}, which is not much in presence of some !a(z) in the
context. However this remains a work in progress and the duality between J · KMSp and J · KOp is
not completely clear here either.

6 Conclusion

The duality in π must be treated carefully. The fragment of π that were translatable into πI
before (ALπ) cannot be dualized. The translation we introduced from a bigger fragment, πio can
be dualized but with some gaps, since we must handle the links processes with precautions.

We have introduced the calculus πw in the last part to be able to have a calculus with an LTS
that has first-class operators, called wires, instead of links. The theory of πw is very new and is
developped in this report. In this calculus all laws we wanted in πI are true and in a much easier
way. The laws for the substitution and full abstraction are about strong bisimilarities which are
closer relation. The duality is much easier to manipulate in πwI.

6.1 Future work

We should be able to complete the proofs of the substitution lemma (lemma 3.3) which seems
to be true but all techniques we tried for now failed. However the proof of the duality in πI with
links (lemma 4.2) is more fragile, since it raises problems mainly about the dual processes of the
links, that do not raise the expected execution traces. This is the initial reason for the introduction
of wires, that are self-dual. Also we plan to soon establish the duality of the encodings into πwI.

Once we complete and understand the theories of πI with links and πw we should relate it to
existing works:

Building links makes us wonder if it is possible to build links for variables with both input
and output capability, with type #T . Equators [Mer99] juxtapose both version of links and are a
partial solution to this problem, but they introduce divergences.

We will study the theory of the calculus πw we introduced in the last part without specifically
focusing on the duality. The mechanism of joining names on one side and asking for joining names
on the other side seems familiar and we could try to relate it to existing systems, like the fusion
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calculus [PV98] where communication between processes can create connection instead of asking
for them like in πw.

πwI is interesting for its duality, since it is probably more than just πI. However πwI seems to
be interesting in itself for example to understand the mechanisms of name aliasing in a calculus
with only bound outputs. We will also compare πwI with π.

Links similar to the ones we defined in sect. 2.2 are used in [BHY05] for channels with output
capability only – where input capability corresponds to “universal types”. Since the typing system
is different we could try to adapt our links to it.

[GLW03] uses linear forwarders (first-class operators implementing the finite links) to deal with
the input capability. The approach is more about the position of the links than about adapting the
definition of the links to its current usage. It may be interesting to adapt this method to translate
into πI.

Finally we can try to relate the existing encodings of λ with other evaluation strategies or with
some less standard encodings built in [Vas05]. They might be more suitable to some translation
into πI without heavy processes like the links. This would help to answer the question of the
expressiveness of πI, at least regarding the Turing-completeness.
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Appendices

A.1 Calculi and subcalculi

The following subcalculi of π (or πw) are used in this report. All of them have the subject
reduction property.

π: the π-calculus, with delayed inputs and usual, non-delayed, inputs, replicated prefixes

Aπ: asynchronous π, i.e. in ab.P , P must be 0

Lπ: localized π, i.e. in a(x).P , x is not used in input subject position in P

ALπ: both asynchronous and localized, ALπ=Aπ ∩ Lπ.

πI: π with internal mobility only: ab.P is preceded by νb, and also with links (which are a special
case than full recursive definitions)

πio: π typed with the πio type system, where only one capability is transmitted in messages.

πw: the π-calculus with wires

πwI: the π-calculus with wires with internal mobility only: ab.P is preceded by νb

A.2 Details on infinite links

The key point to understand the behavior of the link can be seen in the following interaction:

Jab | a(x).P KIAL
τ−→ (νx)(x ↪→ b | JP KIAL)

Informally, after this communication every time x is used, there will be a bound output followed
by a link and that second link will compose5 with either x ↪→ b or a sublink6 of x ↪→ b. Namely,
since P is in ALπ we know that:

5Thanks to the transitivity law: (νx)(a ↪→ x | x ↪→ b) ≈ a ↪→ b
6A link has some sub-processes that are themselves links, e.g. y

T
↪→ x is a sublink of a

oT
↪→ b = a(x).b(y).y

T
↪→ x
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• either x is in output subject, in that case
(νx)(x ↪→ b | JxcKIAL) = (νx)(!x(u).b(v).v ↪→ u | x(y).y ↪→ c)
has no choice but to internally communicate into:
(νyx)(x ↪→ b | b(v).v ↪→ y | y ↪→ c)
∼ b(v).(νy)(v ↪→ y | y ↪→ c)
≈ b(v).v ↪→ c = JbcKIAL.

In this case the sublink v ↪→ u of x ↪→ b will communicate with the link contained in JxcK,
and this interaction will act like JxbK.

• or x is in output object, in that case
(νx)(x ↪→ b | JcxKIAL) = (νx)(x ↪→ b | c(y).y ↪→ x)
∼ c(y).(νx)(y ↪→ x | x ↪→ b)
≈ c(y).y ↪→ b = JcbKIAL

In this case x ↪→ b will communicate with the link contained in JcxK and this interaction will
act like JbxK.

In either case, the link or one of its derivatives composes with another link inside the translation
of an output. Links stay in the translated processes forever, interacting each time their head name
is involved. This interaction take more time, in terms of transitions, than the original processes.

A.3 Proofs

Proof of lemma 2.1 (Subject reduction). Statement: If Γ ` P and P
µ−→ P ′ then Γ′ ` P ′ (with

dom(Γ′) = dom(Γ) + bn(µ))

By induction on the derivation of P
µ−→ P ′, we use a stronger induction hypothesis and tiresome

lemmas that are mainly about subtyping.

• restriction to free names: if Γ ` P then Γ|fn(P ) ` P

• weakening: if Γ ` P then Γ,Γ′ ` P for all Γ′ ranging on fresh names

• substitution with smaller types: if Γ, x : T ` P and Γ ` b : T then Γ ` P [b/x]

• typing of the label: if Γ ` P and P
ab−→ then there is a strict type T such that Γ ` a : oT, b : T

• stronger induction hypothesis: Γ ` P and P
µ−→ P ′ then Γ, bn(µ) : T ` P ′ where T is the

type (or tuple of types) remaining when removing the top-level connective of the type of fn(µ)
(indeed |fn(µ)| = 1 when bn(µ) 6= ∅)

Proof of lemma 2.2 (Lπ ⊂ πio). Statement: if P is a process of Lπ, then P is typable in πio with
the type #oω, where oω := µT.oT :

fn(P ) : #oω ` P

We prove by induction on P ∈ Lπ that, for all V and N , if

1. fn(P ) ⊆ N ] V
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2. ∀v ∈ V , v is not in input subject position in P

then N : #oω, V : oω ` P

Proof of lemma 3.1 (transitivity law). Statement: If b 6= a, c then

∀T a
T
↪→ c . (νb)(a

T
↪→ b | b T

↪→ c)

We build a relation R such that, if P R Q, then:

(P | a T
↪→ c) R (Q | (νb)(a T

↪→ b | b T
↪→ c))

(P | c(z̃).z̃ T̃
↪→ x̃) R (Q | (νb)(b(ỹ).ỹ

T̃
↪→ x̃ | b(ỹ).c(z̃).z̃

T̃
↪→ ỹ))

(P | c(z̃).z̃ T̃
↪→ x̃) R (Q | (νb)(b(ỹ).ỹ

T̃
↪→ x̃ | b(ỹ).c(z̃).z̃

T̃
↪→ ỹ))

(P | c(z̃).z̃ T̃
↪→ x̃) R (Q | c(z̃).(νỹ)(z̃

T
↪→ ỹ | ỹ T̃

↪→ x̃))

(P | c(z̃).z̃ T̃
↪→ x̃) R (Q | c(z̃).(νỹ)(z̃

T
↪→ ỹ | ỹ T̃

↪→ x̃))

with pairwise distinct ‘c’s and ‘a’s, and no ‘x̃’ in the ‘a’s. This way no communication is possible
but those immediately preceded by (νb) or (νỹ). We show that on each side the subprocess can
only do one transition to a parallel composition of zero or more subprocesses on the same side,
and the corresponding process on the other side can do the same transition to the corresponding
process on the other side, except for τ -transitions on the right which correspond to no transition
on the left.

The relation R is an expansion relation up to structural congruence.

Proof of lemma 3.2 (Replication law). Statement: If

1. a is the subject of the prefix α

2. no derivative of P1 can communicate with a derivative of P2 about7 a

3. no derivative of R can make an action on a

then
(νa)(α.R | P1 | P2) ∼ (νa)(α.R | P1) | (νa)(α.R | P2)

The corresponding relation R (for all P1, P2) is a strong bisimulation up to ν-contexts.

• action from Pi: same action, same restriction on both sides. (side-conditions OK thanks to
hyp. 2)

• comm. between Pi and α.R: same action, the new Pi is now (R | P ′i ) or (νx)(R | P ′i )
(side-conditions OK thanks to hyps. 2 and 3)

• comm. between P1 and P2, right to left: same action. It can generate a extra (νx),
handled by the up to ν-contexts and up to ≡.

7i.e. with actions neither of subject a nor of object a
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• comm. between P1 and P2, left to right: same as above, and the hyp. 2 make (νa)
harmless.

Lemma A.1 (Misc. laws).

• (νax)(a
T
↪→ b | b(y).x

T1
↪→ y | Q) . (νa)(a

T
↪→ b | a(x) : Q)

• if x the subject of α then, and T = oT1 is the type of a, then:

(νaz)(a
T
↪→ b | b(y).z

T1
↪→ z | (α.P )[z/x]) . (νa)(a

T
↪→ b | a(x).α.P )

• a(x) : (P | Q) ∼ P | a(x) : Q if x 6∈ fn(P )

• a(x) : (νc)P ∼ (νc)(a(x) : P ) if a 6= c

Proof of lemma 3.3. . Statement: If a is substitutable in P , let T be any type for which there
exists Γ such that Γ, a : T ` P . Then:

JP KIio[b/a] . (νa)(a
T
↪→ b | JP KIio)

By induction on the size of P , we prove that:
if (Γ, ã : T̃ ` P ) and (ã are substitutable in P ) then

JP K[b̃/ã] . (νã)(ã
T̃
↪→ b̃ | JP K) (3)

b(x) : JP K . (νã)(b(y).x
T
↪→ y | JP K) if x ∈ ã (4)

Case analysis on P , for (3):

• P = 0: both sides are ∼ 0

• P = (νc)P1: induction hypothesis and static contexts

• P = P1 | P2: induction hypotheses, static contexts and replication law.

• P = c(z).P1 or P = cd.P1 with c 6∈ ã: induction hypothesis and deterministic transition

• P = !c(z).P1 with c 6∈ ã: induction hypothesis and deterministic relation up to (|/ .)-contexts
and ∼.

• P = c(z) : P1 with c 6∈ ã: induction hypothesis and lemma A.1

• P = a(x).P1, P = !a(x).P1 or P = ac.P1 (with a ∈ ã): does not happen, since a is substi-
tutable

• P = a(x) : P1 with a ∈ ã: induction hypotheses and lemma A.1

• P = ac with a ∈ ã: lemma A.1 and transitivity law

• P = ca.P1: deterministic transition, induction, replication law and transitivity law
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Case (4):
We now have to prove (4) knowing ((4) for smaller P s) and ((3) for P and smaller P s).
(Work in progress: it is harder to exploit induction hypotheses)

Proof of lemma 5.1. Equivalent statement: for all P,Q,R processes of πw,

1. P | 0 ∼o P

2. P | Q ∼o Q | P

3. P | (Q | R) ∼o (P | Q) | R

4. (νa)(P | Q) ∼o (νa)P | Q if a 6∈ fn(Q)

5. (νa)(νb)P ∼o (νb)(νa)P

6. (νa)0 ∼o 0

7. !P ∼o P | !P

1,5,6,7 are straightforward; 2 comes from the fact that the rules of the LTS are symmetric (thanks
to ◦ symmetric), 4 needs careful checking and 3 uses 5 and 6 as well as the fact that the composition
of labels ◦ is associative.
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