
Specification of imperative languages using

operational semantics in Coq

Jean-Marie Madiot
internship under the supervision of Freek Wiedijk

2010, June and July
Radboud University of Nijmegen

1 Introduction

In software verification, formal verification is increasingly used to provide guar-
antees for behaviors in various domains. To correctly use formal verification one
needs formal specifications describing the environment in order to state math-
ematical propositions about a system. Such specifications are currently and
actively developed for hardware, micro-kernel or programming languages.

Formalizing compilation of programs has interests in several domains and it
needs several layers of formalization. One needs a specification of the low-level
language – generally assembly – to assume hypotheses on the actual behavior of
the compiled programs. Moreover, one also needs a specification of the high-level
language (i.e. the source code language) to be able to formulate the intended
behavior of the program.

We focus on specifying a low-level language, C, in a way considering stack
overflow, undefined behavior and nondeterminism. Indeed these aspects of the
C programming language are generally omitted in specifications whereas they
allow compilers to perform optimizations. The goal we pursue in the following
is to provide a formal specification of the C progamming language faithful to
the C standard [ISO99].

The development of the specification will use the proof assistant Coq. Indeed
using a computer for verbose specification is a good way to avoid errors by
automated checking. We use the flexibility of Coq and also sometimes we use
the constructive paradigm of Coq.

1.1 Nondeterminism and undefined behavior

Undefined behavior and nondeterminism were designed to provide the compiler
designers with some flexibility in the implementation and mostly to allow them
to optimize the compiled programs. For instance, in the functional programming
language Objective CAML the order of evaluation of the arguments of a function
is not specified and it can be used by the compiler to use less memory. Undefined

1

behavior lets the compiler implement some optimization without considering all
possible cases with could lead to a slower produced program.

Nondeterminism can be justified in some situations as followed:

int main ()

{

f() + g();

}

In the previous source code, a function call to f can use less stack or memory
than to g. Depending on this, the result of this evaluation has to be stored and
the remaining space for the computation of g() would be smaller, so the compiler
can choose the best way to order these operations. This kind of phenomenon
especially appears in recursive calls.

However if nondeterminism appears harmless – as it is just about the order
of evaluation – there are situations where the difference has more significant
consequences:

int main ()

{

int a, b;

b = (a = 0) + (a = 1);

return a;

}

In the previous program, the value of b at the end of the function is always
1 but the function can return either 0 or 1, depending on the evaluation order.
In fact this is so problematic that the C standard specifies the behavior this
program is undefined in the sense it can really do anything. The C standard
defined several kinds of special behaviors:

• implementation-defined behavior: the implementation of the compiler
chooses a behavior in a set of authorized behaviors

• unspecified behavior: at runtime the program has to respect a set of pos-
sible behaviors

• undefined behavior: the program can do anything, for example crashing

Undefined behavior cannot be empirically verified as it can be not repro-
ducible and to consider these aspects of the C standard it seems better to have
a full formal specification of the system. Indeed, formal verification can be
avoided when one can enumerate all the possible ways a program can behave,
and undefined behavior and nondeterminism seem to prevent from being able
to test all the alternatives.

One can wonder if static and syntactic analysis can avoid heavy specification
by simply considering variable names in the source code. Of course this is
impractical in general as C allows pointers manipulation. In the expression (∗a

= ∗b ++) if a and b have the same value, then ∗a and ∗b will be the same
variable and the evaluation of the expression is then undefined.

2

1.2 Call stack handling

The existing formal descriptions of C does not consider the function call stack
– and thus stack overflow – whereas most implementations use the call stack
to significantly improve performances. Unfortunately the C standard is quite
evasive about the stack1.

For example the following C program calls recursively 225 times the function
f and each recursive call causes some allocation for the local variables making
allocation summing up to about 130 megabytes 2.

int f (int c)

{

return c && f(c-1);

}

int main ()

{

return f(1 << 25);

}

Allocating that on the heap with functions as malloc is very possible, even
if it can fail. However using this amount of memory on the stack is generally
causing a stack overflow because the stack is generally of a moderated size. A
stack overflow cannot be caught and it causes a segmentation fault, whereas
an allocation done with malloc won’t crash. (It will return NULL instead of a
correct pointer.)

Formalization of the C specification usually does not consider the stack and
the fact that the C99 standard does not talk about it. It could result that
we can certify a program (like the one above) that fails with most real-world
implementation of the specification (the compilers). Even if certified compilers
do their job – which is providing a program that respects a given semantics
under some assumptions – we would like to be able to provide a specification
considering the call stack in different ways.

1.3 Semantics

The specification of programming language is usually done through a natural
language sometimes leading to ambiguities of interpretation, and C is not an
exception. A formal specification is usually done using a formal semantics.

A formal semantics of a programming language defines its meaning. This
meaning can be expressed in another language (as mathematical functions, or
another language – generally lower-level). We would call such a semantics de-
notational.

However, this meaning can also be directly expressed in terms of execution
and then we deal with operational semantics. There is mainly two kinds of

1in fact the C99 standard never mentions the call stack
2on usual machines where sizeof(int) equals to 4

3

operational semantics: structural operational semantics and natural operational
semantics.

Structural operational semantics (SOS) (also called small-step semantics)
explains rather syntactically the steps of execution of a program. Natural op-
erational semantics (also called big-step semantics) defines the value which the
program will eventually have, if any.

Example: in the figure 1 we present both the big-step semantics and the
small-step semantics rules for the evaluation of an expression with + as top-
level connective. The representation of the integers are underlined (n) and
n1 + n2 corresponds to the representation of the integer n1 + n2.

e1 → e′1

e1 + e2 → e′1 + e2

e2 → e′2

n1 + e2 → n1 + e′2 n1 + n2 → n1 + n2

e1 ⇒ n1 e2 ⇒ n2

e1 + e2 ⇒ n1 + n2

small-step big-step

Figure 1: Operational semantics: rules for +

Since in the following we will mostly talk about imperative languages the
state of the machine running the program will be the main notion of value. We
will note 〈i, s〉 ⇒ s′ for the meaning “the program i with the value s evaluates
into the value s′” which is rather a natural operational semantics notion. We
will also note 〈i, s〉 → 〈i′, s′〉 the notion of “the program i associated with the
state s transforms itself in one step into the other program i′ with the state s′

(we now talk about small-step semantics).
The programs are generally composed of both expressions and instructions

and we will respectively note the associated transitions →e and →i. s will
designate the state of the machine, which can be for example a map between
variable names x and values n. We will note as usual s[n/x] the state s in which
the value of x is now n. We will also note→∗ the reflexive and transitive closure
of →. For example 〈x× y + 3, (x 7→ 1, y 7→ 2)〉 →∗e 〈5, (x 7→ 1, y 7→ 2)〉.

2 Bottom-up approach

Developing a semantics for a programming language can be some hard work and
to avoid as many mistakes as possible we choose to approach the system starting
with a simple and well-known one, and then progressively add features to it in
order to have a system working throughout the development. We acknowledge
[Plo81] for inspiring the first drafts of the semantics.

All steps that follow have been implemented in Coq as different languages
with their own semantics.

4

2.1 The While language

The While language has expressions e and instructions i, defined by the fol-
lowing grammars:

e ::= n | x | e� e | �e (1)

i ::= skip | i ; i | if e then i else i | while e do i | x := e (2)

where

• � is a binary operator (� is one of the +, ∗,− or any comparison ≤,≥, <
,>,=, 6=)

• � is a unary operator (� can here be only the negation ¬)

• n the representation of an integer

• x a variable name

There is no typing system and there is no need for it as expressions are all
of the type int. This is a small extension of the language defined in [Ber07]
which is given a small-step semantics – among others.

Intuitively the semantics of the expressions is as usual and saying that if x
is not defined in s, it is in s[n/x]. The semantics of While we defined in Coq
was quite simple. The memory is simply addressed by the variable names and
the evaluation of expressions has no side effects so it can be done independently.
Indeed, the first implementation considered the evaluation of expressions as a
single “small-step” ⇒. The semantics for the instructions is described below.

〈i1, s〉 → 〈i′1, s′〉
〈i1; i2, s〉 → 〈i′1; i2, s

′〉
;sub

〈skip ; i2, s〉 → 〈i2, s〉
;skip

〈b, s〉 ⇒ n n 6= 0

〈while b do i, s〉 → 〈i; while b do i, s〉
whileT

〈b, s〉 ⇒ 0

〈while b do i, s〉 → 〈skip, s〉
whileF

〈b, s〉 ⇒ n n 6= 0

〈if b then i1 else i2, s〉 → 〈i1, s〉
ifT

〈b, s〉 ⇒ 0

〈if b then i1 else i2, s〉 → 〈i2, s〉
ifF

〈e, s〉 ⇒ n

〈x := e, s〉 → 〈skip, s[n/x]〉
:=

〈·, ·〉 ⇒ · and ·[·/·] are explicitly defined in the Coq source code and this is
enough for such a small language.

5

2.2 Adding side effects

One characteristic of the C programming language is that expression can contain
side effects – even most side effects are contained in expressions. We then
develop another toy language with this property. The grammar below is almost
enough to see the modifications of the language. The affectation is now a part
of the expression and not of the instructions.

e ::= n | x | x := e | e� e | �e (3)

i ::= skip | i ; i | if e then i else i | while e do i | e (4)

One big difference with the previous semantics is that we need an explicit
handling of the state in the semantics for the expressions, we then note the
reduction relations for the expression and the instructions respectively →e and
→i. We detail the semantics for the expressions.

Nevertheless, in order to take into account the modification of the state by
the evaluation of the expressions we have to add rules for constructors which
have expressions as parameters. For example we transform the rules ifT and
ifF into three rules ifT , ifF and ifsub. The first two transform a statement
of the form if 0 then i1 else i2 in i2 and if n then i1 else i2 in i1 if n 6= 0.

n 6= 0

〈if n then i1 else i2, s〉 →i 〈i1, s′〉
ifT

〈if 0 then i1 else i2, s〉 →i 〈i2, s′〉
ifF

The last one is detailed below:

〈b, s〉 →e 〈b′, s′〉
〈if b then i1 else i2, s〉 →i 〈if b′ then i1 else i2, s

′〉
ifsub

Note that we have to handle the while differently as if we transform the
conditional sub-expression (b) into a value then we will have to retrieve the
original expression, so we change the rules for while into a single syntactic one:

〈while b do i, s〉 →i 〈if b then i; while b do i else skip, s〉 while

As instructions can contain expressions whose result are ignored – like in
C where in the term a=2; the subterm a=2 is an expression – we add a rule
of inheritance of →i from →e and a rule transforming the instruction ignor-
ing a value into skip. Note that the constructor ignore is here hidden for
convenience.

〈e, s〉 →e 〈e′, s′〉
〈e, s〉 →i 〈e′, s′〉

ignoresub

〈n, s〉 →i 〈skip, s〉
ignore

6

For testing and feasibility purposes we write a little program that computes
the GCD of two numbers in this language. Then we prove that this program will
terminate on any non-negative arguments. In fact the exact statement is that
it can terminate (i.e. end on the skip instruction) and does not talk about any
other possible sequence – even if the semantics is expected to be deterministic.

Lemma gcd_terminating: forall a b, { d |

〈 gcd "a" "b" | ("a", Z_of_nat a) :: ("b", Z_of_nat b) :: nil 〉 →*

〈 skip | ("a", Z_of_nat d) :: ("b", 0) :: nil 〉}.

Note that the statement is constructive: the { d | . . . } statement means
that there exists some d such that “. . . ” but also that Coq is able to produce
such a d. And indeed we can extract from this proof a ML term that computes
the GCD of two natural integers.

2.3 Adding procedures

To add procedures to the language we have to handle the environment differ-
ently. As we want to keep the language and the implementation simple we’ll
make a simple system of scope: a variable is accessible since it has been defined
and local variable of procedures are destructed when leaving the procedure,
which is necessary to handle recursion.

e ::= n | x | x := e | e� e | �e (5)

i ::= skip | i ; i | if e then i else i (6)

| while e do i | e | call x with (e, . . . , e) (7)

Implementing the procedures in the semantics implies a notion of environ-
ment for the procedures themselves, which will likely be the case in the more
general case of C. The environment is now a stack which contains the value of
all defined variables but this does not fundamentally change the Coq implemen-
tation. At each procedure call the special token PROC is pushed on the stack,
then followed by the arguments.

Leaving a function call will cause all arguments to be popped until a PROC
is reached. (If no PROC is found then the execution ends). We do not detail
the rules for this semantics given that adding functions is more relevant in that
the rules are more general so that the next section will suffice. Also for this
quite simple language we develop a Coq function that performs a small-step
reduction – if possible.

2.4 Adding functions: the Return language

We now talk about functions which can return a value. Unlike functional pro-
gramming language we want that returning a value means to use the keyword
return at any moment in the function. As we use small-step semantics a call to

7

a function could be transformed into instructions whereas a call to a function
is an expression. (as in x:=gcd(3,4)+3).

We have one main difference here which is that function calls can be made
inside expressions. Then the expressions/instructions grammars have to be
mutually recursive (because intermediate states of an expression containing a
function call will contain instructions of the function called). But also – and
mainly – the expressions/instructions semantics have to be mutually recursive.

For convenience we will call this language the Return language. The gram-
mar is the following:

e ::= n | x | x := e | e� e | �e (8)

| e ? e : e | id(e, . . . ,e) | wait(i) (9)

i ::= skip | i ; i | if e then i else i (10)

| while e do i | e | return e | exit e (11)

The main changes are all in the constructor ·(· , . . . , ·) (the function call)
and the return instruction (for leaving a function call with a value). We add
a constructor wait for embedding instructions in expressions when a function
call is encountered, but this constructor does not need to be in the original
programming language’s syntax.

We also add the ternary operator ? : and the exit function to apprehend
these new notions since we want to approach the C language. The exit function
is easily definable given the way we encode function calls, since it just have to
skip the PROC elements on the stack.

Like the previous language with procedures we have to consider an envi-
ronment for global variables like the body of the functions. As usual in the
operational semantics we note

p ` 〈 i | s 〉 →∗ 〈 i′ | s′ 〉

for a reduction of where p contains the global information that will not be
modified all along the execution. We could just insert this kind of information
into the state s but this is another chance to generate mistakes.

We detail some of the 45 inference rules of the semantics we build for the
Return language below.

Final step of the result of a binary operator:

c ` 〈 n1 � n2 , s 〉 →e 〈 eval�(n1, n2) , s 〉
bop calc

Forcing the evaluation from left to right for binary operators:

c ` 〈 e2 , s 〉 →e 〈 e′2 , s′ 〉
c ` 〈 n1 � e2 , s 〉 →e 〈 n1 � e′2 , s′ 〉

bop subr

Below is the case of the function call when all arguments are values. We
see here that that find proc is a Coq function which can return None if the

8

function name is not in the global environment c and in case of success return
the body of the function and the name of the arguments. In the same way
get num returns None if an argument is not a value and the list of the values
in the other case. Then mapargs build an environment from the names and the
values and the instructions of the body of the function are embedded in the
“wait” constructor.

find proc c f = Some (~x, body)
get num args = Some ~n

c ` 〈 call f with args , s 〉 →e 〈 wait body , mapargs ~x ~n + + PROC :: s 〉

When return is reached with a value (n) the next step is popping every
local variable from the stack until reaching PROC.

p ` 〈 return n , MEM(y, vy) :: s 〉 →i 〈 return n , s 〉
return pop

And when a PROC is encountered with a value then the value is ready and
the “wait” unleash the value contained by the return.

c ` 〈 wait (return n) , PROC :: s 〉 →e 〈 n , s 〉 wait return

We also developed a Coq tactic (written in Ltac) which tries to apply the
correct rules to prove a goal which top-level connector is →i,→e,→∗i or →∗e.
The tactic, sos small step, is written with the underlying objective that its
behavior should be practically the same as an interpreter. Indeed the use of
this tactic often manifest as visualizing the steps of the computation of a given
program.

Measuring the stack is also quite easy the way we built the semantics. In-
deed at any moment the size of the stack is the length of the data structure
representing the state. Thus to consider stack overflow – although this notion is
arbitrary in such a toy language – one just need to add a predicate to consider
the maximum length of the state used in a sequence of reduction.

2.5 Adding nondeterminism

We only add the nondeterminism now because, for a deterministic system, find-
ing mistakes and debugging is easier. The proofs of properties specific to the
deterministic case obtained on the previous systems made the systems trustwor-
thy and we can then use them as a model. Indeed non determinism is almost
straightforward. The rules that are modified are those about binary operators
and expressions in arguments of function calls.

For instance the following rule of the Return language:

c ` 〈 e2 , s 〉 →e 〈 e′2 , s′ 〉
c ` 〈 n1 � e2 , s 〉 →e 〈 n1 � e′2 , s′ 〉

bop subr

9

become this new rule:

c ` 〈 e2 , s 〉 →e 〈 e′2 , s′ 〉
c ` 〈 e1 � e2 , s 〉 →e 〈 e1 � e′2 , s′ 〉

bop subr

which does not force the left operand to be a value to let the right one to evolve.
For illustrate the nondeterminism of this variant of the Return language,

we also give an example of a program that can evolves in an infinite number of
ways and we proved it can:

Lemma non_functionality_infinite :

let i := "i" in

let c := "c" in

let loop :=

(while

bop Mul (bop Add (i <- #0) (i <- #1)) !i

do

ignore (c <- bop Add !c #1))

in

forall n : nat,

nil `
〈 loop | MEM "i" 0 :: MEM "c" 0 :: nil 〉 →*

〈 skip | MEM "i" 0 :: MEM "c" (Z_of_nat (S n)) :: nil 〉
.

3 Validation

The choice of the inference rules for the semantics is fundamental in the sense
that it has to correspond to what it means to be correct. Indeed formalization,
before proving anything, implies defining what the proven theorem will mean.

The idea of the De Bruijn criterion – saying trusting a system should mean
trusting a small kernel of this system – also applies for the formalization itself:
if all the definitions are small and clear the meaning of the theorems is also clear
and trustworthy.

Unfortunately defining an operational semantics can be verbose and errors
can be made when writing a semantics. This is why proving likelihood theorems
about the system helps finding errors which could be not just syntactic errors
or oversights, but also more fundamental misconceptions.

3.1 Functionality

A common expected property is functionality, meaning a program can evolve
in only one way at each step. This may also be called determinism. We may
remark that another wanted property is confluence which is weaker but also
often more desired, as it ensures that a program each time eventually does the
same thing even if it can behave differently before it terminates.

10

This property can be expressed as: “if the program i in the state s can
evolve into a program i1 in the state s1 or into a program i2 in the state s2,
then i1 = i2 and s1 = s2”. The statements of the version for both instructions
and expressions in Coq is described below.

Lemma sos_instr_functionality : forall p i i1 i2 s s1 s2,

p ` 〈 i | s 〉 → 〈 i1 | s1 〉 ->

p ` 〈 i | s 〉 → 〈 i2 | s2 〉 ->

i1 = i2 /\ s1 = s2.

Lemma sos_expr_functionality : forall p e e1 e2 s s1 s2,

p ` 〈 e | s 〉 >> 〈 e1 | s1 〉 ->

p ` 〈 e | s 〉 >> 〈 e2 | s2 〉 ->

e1 = e2 /\ s1 = s2.

Where → is the reduction relation for the instructions and >> is the reduc-
tion relation for the expressions. This theorem has been proven for the hence
deterministic language Return.

The proof of these two properties invokes a more general lemma which prove
this property for both expressions and instructions, using an induction on their
size. This lemma has a proof which uses many times inversion methods3 because
the proof is mainly about things that “cannot happen”. (And the resulting proof
term is quite big)

This proof helped finding errors about a few rules, some about exit, return
and also stack handling. Indeed when writing the rules of the semantics one
can make choices that are not errors strictly speaking. For example one can
let some operation step possible by several rules at once. It is also possible to
make mistakes simply on the variable names for example using s′ instead of s in
the while rule and thus authorizing any modification of the environment. This
kind of errors are spotted when attempting to prove the functionality.

The proof functionality could be used to build a proof of certified interpreter.
It is tempting to state the excluded middle on the existence of a successor, i.e.
either there is a successor of 〈i|s〉 by→i or there is not. That formulation seems
easy and immediate but is not directly constructive. Having a constructive proof
of it would be very interesting, as it would provide a certified interpreter for the
language, which in case of error, would provide a proof of the impossibility to
reduce.

3.2 Decidable equality

The equality of the expression and the instructions is normally decidable for
any programming language. This is equivalent to say that given the internal
representation of two expressions or instructions, a function definable in Coq can
decide whether they are equal or not. Such a property is usually true for terms

3The tactic inversion

11

with a finite representation. The statements for this property are presented
below.

Lemma instr_eq_dec : forall a b : instr, { a = b } + { a <> b }.

Lemma expr_eq_dec : forall a b : expr, { a = b } + { a <> b }.

This property is not too hard to show4. It also forces not to put infinite
objects in the syntax of the language, for example the syntax cannot contain
binary operators containing the associated function. (Because the equality be-
tween two functions of type nat -> nat -> nat is not decidable.)

3.3 Example of a certified program

We give an example of a certified program in the Return language using return
instructions and recursive calls (of the same function). It is a functional version
of the calculus of the GCD of two numbers.

In the following we write a program in the Return language that computes
the result of gcd(16, 9) thanks to a recursive procedure and then assigns this
value to the variable res. The source code below is written with Coq notations
we add to the semantics.

proc "gcd" with ["a", "b"]

begin

If bop Eq !"a" #0 then

return !"b"

else

If bop Eq !"b" #0 then

return !"a"

else

If bop Gt !"a" !"b" then

return (call "gcd" with [bop Sub !"a" !"b", !"b"])

else

return (call "gcd" with [bop Sub !"b" !"a", !"a"]).

end

main

ignore "res" <- call "gcd" with [#15, #6]

Some explanations:

• bop is the constructor for binary operators

• Sub is the syntactic binary operator for the subtraction

• Eq is the one for the equality test

4but of course, the tactic decide equality does not work – mainly for two reasons:

• expr contains a constructor having list expr as a premise

• expr and instr are mutually recursive

12

• #n stands for n

• !"b" stands for the variable addressed by the string “b”

• call is the function call

• [., .] is the list of arguments passed to the function

• ignore is the instruction constructor ignoring an expression

• <- is the assignment of an expression to a variable

Thanks to the tactic we have previously written we can see all the small
operational steps the program goes through inside Coq itself, just by applying
the tactic. But what is more interesting is that we can state some propositions
about the behavior of this program.

For example we have proven that the recursive function calculating the GCD
is correct and terminates in the Return language. The Coq statement is de-
tailed below where gcd body designates the body of the function of the program
written above, prod is the construction conjunction in Coq, is gcd a predicate
we define below.

Definition divide (a b : Z) : Type := { q | b = a * q }.

Definition is_gcd d a b :=

prod (divide d a)

(prod (divide d b)

(forall x, divide x a -> divide x b -> divide x d)).

Lemma gcd_correct :

forall a b s, Z0 <= a -> Z0 <= b ->

{ d |

prod (

[("gcd", ["a", "b"], gcd_body)]

`
〈 gcd_body | MEM "a" a :: MEM "b" b :: PROC :: s 〉 →*

〈 return #d | MEM "a" a :: MEM "b" b :: PROC :: s 〉
)

(is_gcd d a b) }.

In plain English the lemma states that for all non-negative integers a and b,
there exists d such that the function will return d and d is the greatest 5 divisor
of both numbers.

The process of writing the program and mostly the one of proving properties
on it spotted some bad conceptions of some semantics rules. It also strengthened
confidence in this semantics as the program did what we intended it did.

After approaching the aimed C language with quite smaller ones we try to
build a semantics for a specification of C.

5in the sense of the divisibility

13

4 Towards a C semantics

We try to answer basic but necessary questions about a semantics for the C
specification. Obviously a complete specification of the C standard goes beyond
the framework of this internship but we will try to answer questions that came up
when attempting to develop this specification in Coq. This work acknowledges
previous works on the subject as [Nor98] which represents a tremendous advance
in this direction.

4.1 Step size

The question of which kind of operational semantics we will use is quite impor-
tant as it will in either way decides which parts of both the specification and
its usage will be hard to handle. The big-step semantics are handy for various
reasons when defining a semantics for an imperative language. However for a
full description of the C standard specification we choose a small-step semantics
for several reasons.

Full nondeterminism: one can think nondeterminism can be simulated in a
big-step semantics by giving rules saying that an argument or an operand can
be evaluated before or after another, with rules like those following (for the +
operator):

〈e1, s〉 ⇒ 〈n1, s
′〉 〈e2, s′〉 ⇒ 〈n2, s

′′〉
〈e1 + e2, s〉 ⇒ 〈n1 + n2, s

′′〉
+lr

〈e2, s〉 ⇒ 〈n2, s
′〉 〈e1, s′〉 ⇒ 〈n1, s

′′〉
〈e1 + e2, s〉 ⇒ 〈n1 + n2, s

′′〉
+rl

We recall the small-step version:

〈e1, s〉 → 〈e′1, s′〉
〈e1 + e2, s〉 → 〈e′1 + e2, s

′〉
+l

〈e2, s〉 → 〈e′2, s′〉
〈e1 + e2, s〉 → 〈e1 + e′2, s

′〉
+r

〈n1 + n2, s〉 → 〈n1 + n2, s〉
+

These simple rules suffice to bring a difference between big-step and small-
step. For example in an expression of the form (a+b)+c the big-step semantics
groups the evaluation of the subexpressions whereas in small-step one can trans-
form a into a′, then c into c′, then b into b′ (which is impossible in the previous
big-step semantics). As we want to be able to express such subtleties small-step
semantics seems to suit our need of expressiveness.

Note that for that kind of problems we can refine the answer saying that we
need a small-step semantics only for expressions for now.

14

Non-termination: having a general specification implies handling correctly
non-termination of programs. One has to be able to state that a program will
in any case terminate, that it can terminate or that it cannot terminate. Those
notions differ only because we talk about non-deterministic operations. A big-
step semantics gives a relation between a program (e), a state (s), and a value
(v, which generally contains a state). Hence one can only express the “possible
termination” (∃v 〈e, s〉 ⇒ v) and its contrary (∀v 〈e, s〉 6⇒ v).

Small-step semantics let us be able to manipulate more precisely → as a
relation. For example “always terminating” can be translated as “there is no
infinite →-sequence starting from the initial program and state”. Observe that
we can use more tools from rewriting systems with the small-step’s → and not
with the big-step’s ⇒. Note that it is possible to use a big-step semantics to
describe non-terminating computations as described in [LG09] but it involves
coinduction and we prefer keeping simple fundamental concepts of proof theory
to define a formal specification.

Special value U : the specification has to consider undefined behavior, which
can appear in only some possible evaluations and the C standard says if one
path of evaluation leads to undefined behavior then the instruction itself leads
to undefined behavior. Using big-step semantics makes necessary to have a
special value which we note U to distinguish it from non-termination.

Interleaving: the nondeterminism in expressions can have other consequences.
Expressions can contains function calls and the question if in the expression
f() + g(), the two function calls can interleave is not clearly defined in the
specification. A big-step semantics would be likely not to allow interleaving and
a small-step semantics can express both alternatives. As a technical question in
the formal specification should not influence this kind of decision we choose to
develop a small-step semantics.

Additionally it seems easier in a small-step semantics to visually see the
execution steps of a program. Note that if we emphasize the reasons that
motivated this choice, it’s because a small-step semantics as its flaws, even if
they are mostly about how more difficult or verbose it is to develop.

4.2 Context trick

As used in [Nor98] we develop a technique which reduce the number of rules
– and thus the number of errors – about the expressions and which can make
easier their use. The principle is to specify which operand and which subterms
can be altered. For example in the expression a ? b : c the a is the only
part that can evolve on its own whereas in a + b both operands can evolve.

To avoid writing a lot of verbose rules which only differ of a few characters
only to precise these priorities, we build contexts to precise where the reduction
can happen.

15

We also write a tactic taking a subterm as an argument which transform the
main term into a context containing the remaining of the term.

For instance to avoid difficult handling of big expressions, the following goal

P ` 〈 e1, s 〉 →e 〈 e1’, s’ 〉 ->

P ` 〈 expr_call f [e2, e1 , e3], s 〉 →e

〈 expr_call f [e2, e1’, e3], s’ 〉.

can be proven thanks to the tactics

context_extract e1.

context_extract e1’.

The expressions then look like C[[e/-]] and we just have to apply the context
rule for →e:

P ` 〈 e, s 〉 →e 〈 e′, s′ 〉
P ` 〈 C[e/−], s 〉 →e 〈 C[e′/−], s′ 〉

expr sub

4.3 Sequence points

Sequence points are a notion related to undefined behavior. It’s mainly use
to forbid some not well-defined practices of programming. Sequence points are
some syntactic transitions as followed ‘,’, ‘;’,‘&&’,‘||’,‘·()’ (before a function call)
and ‘return’.

Between two sequence points only one writing of the same memory address
can be done and a value can be read only to compute a value on the right-hand
side of an assignment operator (for example, not for computing the address
where the value will be stored6). The compiler ensures all side effects are per-
formed before crossing the sequence point.

The implementation of the notion of sequence point is not complete at all
and a previous thorough work on how to model the memory map is necessary.
However, as the notion of sequence point may change ore be replaced in a near
future, it may be interesting to directly consider the new notion.

4.4 Stack handling

Even if stack handling is not (yet) a part of the standard and may belong to the
list of the implementation-defined behavior we want to consider stack handling
in the specification even if there could have different ways to behave:

• no stack (allocation with malloc)

• predefined stack (trying to stick to gcc)

• function of stack

6“Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value shall
be accessed only to determine the value to be stored.” [ISO99]

16

We chose the last option which will give, given some properties of the func-
tion say how much will be allocated in the stack or a range for this values. To
specify the behavior of a compiler one will then have to give a function “of stack
handling” giving the amount of memory the compiler guarantees not to exceed.

4.5 Differences with a compiler

There is some questions one can ask in relation to the role of a compiler. These
questions help understanding which aspect of the stack can be present in a
future formal specification.

The role of the specification is only describing the possible computations, not
the way the intermediate values are stored for instance. For this very reason
we cannot consider registers in the specification, at least not the same way
compilers do. A consequence of this is that since the intermediate values can be
stored on the stack rather than on the registers, handling registers differently
can alter the size of the size.

One possible workaround is considering there is no registers. Indeed if every
intermediate value is stored on the stack then it could be simulate best the
compilers that archive the values of the registers on the stack before calling any
other function.

5 Conclusion

The bottom-up approach were successful in the sens that the Coq implemen-
tation is working, we can even use them to visually see the programs and the
environment evolving. There are also some results and proofs about it. This
approach can be used to build semantics that can be used to simulate with (very
useful for error checking).

If they are only used for small languages it is probably a good way to proceed
to reach a bigger problem.

Then we started a semantics for the specification for C. Of course the du-
ration of the internship was too short, you can’t expect formalizing such a big
specification in a language more verbose than English, Coq. However we raised
useful questions and we tried to answer them from a practical and technical
point of view. We have a working but quite incomplete implementation of these
semantics. We also encountered many technical problems with Coq itself.

Even if the objectives could be considered way too optimistic we have to say
that the work engaged with this internship is the subject of a PhD thesis pro-
posal7. There is hence hope a more complete specification of the C99 standard
could be achieved.

The development of proofs certification with this kind of semantics could be
long and tedious. Nevertheless once this semantics well-established one could

7Formalizing the C99 standard in HOL, Isabelle and Coq, Research proposal, Radboud
University Nijmegen

17

generate proofs and proof obligations from techniques of Hoare logic which are
easier to handle.

All the implementation developed during the internship will be available
under LGPL to further examination online among other things [Mad10].

References

[Ber07] Yves Bertot. Theorem proving support in programming language se-
mantics. Research Report RR-6242, INRIA, 2007.

[ISO99] ISO. Iso c standard 1999. Technical report, 1999. ISO/IEC 9899:1999
draft.

[LG09] Xavier Leroy and Hervé Grall. Coinductive big-step operational se-
mantics. Information and Computation, 207(2):284–304, 2009.

[Mad10] Jean-Marie Madiot. Notes on a formal specification of the C standard,
2010. http://perso.ens-lyon.fr/jeanmarie.madiot/cspec/.

[Nor98] Michael Norrish. C formalised in HOL. Technical report, University
of Cambridge, 1998.

[Plo81] G. D. Plotkin. A structural approach to operational semantics, 1981.

18

