
A behavioural theory for a π-calculus with preorders

Daniel Hirschkoffa,∗, Jean-Marie Madiota, Xu Xianb

aENS Lyon, Université de Lyon, CNRS, INRIA, France
bEast China University of Science and Technology, China

Abstract

We study the behavioural theory of πP, a π-calculus in the tradition of Fu-
sions and Chi calculi. In contrast with such calculi, reduction in πP generates
a preorder on names rather than an equivalence relation. We present two char-
acterisations of barbed congruence in πP: the first is based on a compositional
LTS, and the second is an axiomatisation. The results in this paper bring out
basic properties of πP, mostly related to the interplay between the restriction
operator and the preorder on names.

Consequently, πP is a calculus in the tradition of Fusion calculi, in which
both types and behavioural equivalences can be exploited in order to reason
rigorously about concurrent and mobile systems.

Keywords: process calculi, behavioural equivalence, labelled transition
system, pi-calculus, axiomatisation

1. Introduction

The π-calculus expresses mobility via name passing, and has two binders: the
input prefix binds the value to be received, and restriction is used to delimit the
scope of a private name. The study of Fusions [20], Chi [10], Explicit Fusions [25]
and Solos [16] has shown that using restriction as the only binder is enough to
express name passing. In such calculi (which, reusing a terminology from [13],
we shall refer to as fusion calculi), the bound input prefix, c(x).P , is dropped
in favour of free input, cb.P , and communication involving two prefixes cb and
ca generates the fusion of names a and b. This yields a pleasing symmetry
between input and output prefixes; moreover, one can encode bound input in
terms of free input as (νx)cx.P . Fusion calculi therefore promote minimality
(keep only restriction as a binder) and symmetry (input and output prefixes
play similar roles). Moreover, and most importantly, fusions act on restricted
names, in contrast with the π-calculus, where restricted names can only replace
names bound by input (and are thus treated like constants).

The behavioural theory of existing fusion calculi is generally simpler than in
the π-calculus (in particular, bisimilarity is a congruence). Fusion calculi have

∗Corresponding author

Preprint submitted to Elsevier May 15, 2015

notably been used to analyse concurrent constraints [24], to study distributed
implementations of programming languages [6, 11] and to establish connections
with proof theory [9].

Symmetry comes however at a price. It has indeed been shown in [13] that
i/o-types (input/output types, [21]) cannot be adapted to a fusion calculus.
Such types go beyond the simple discipline of sorting, and can be useful, in
particular, to reason using typed behavioural equivalences [21, 23].

The intuitive reason of the incompatibility of i/o-types with fusions can be
explained by considering the following structural congruence law in Explicit
Fusions (but the point is essentially the same for other fusion calculi):

a(x).P | a=b ≡ b(x).P | a=b .
Process a=b is an explicit fusion. The law says that in presence of a=b, an input
on a can be viewed as the same input on b, and vice-versa (fusion processes
are somehow akin to equators, in an asynchronous setting [15]). This shows
that fusions define a symmetric relation on names; as proved in [13], this is
incompatible with a nontrivial (i.e., asymmetric) subtyping relation, which is
necessary for i/o-types to make sense.

This observation has led in [13] to the introduction of πP, a π-calculus with
name preorders. The most important difference between πP and existing name-
passing calculi is that interaction does not have the effect of equating (or fusing)
two names, but instead generates an arc process, as follows:

ca.P | cb.Q −→ a/b | P | Q .

The arc a/b expresses the fact that anything that can be done using name b can
be done using a as well (but not the opposite): we say that a is above b. Arcs
induce a preorder relation on names, which can evolve along reductions.

Arcs can modify interaction possibilities: in presence of a/b, a is above b,
hence a process emitting on b can also make an output transition along channel
a. In general, an output on channel c can interact with an input on d provided
c and d are joinable, written c g d, which means that there is some name that
is above both c and d according to the preorder relation. To formalise these
observations, the operational semantics exploits conditions involving names,
which are either of the form b ≺ a (a is above b), or ag b (a and b are joinable).

πP can be described as a variant of Explicit Fusions, in which arcs replace
fusion processes. Beyond the possibility to define i/o-types and subtyping for
πP [13], we would like to analyse the consequences of the novel aspects of πP,
whose behaviour does not seem to be reducible to existing calculi.

In particular, name preorders have an impact on how processes express be-
haviours. Barbed congruence for πP, written ', is defined in [13]. Some laws for
' suggest that the behavioural theory of πP differs w.r.t. existing fusion calculi.
As an illustration, consider the following interleaving law, which is valid in πP
(and in π):

a(x).b(y).(x | y) ' a(x).b(y).(x.y + y.x) .

a(x) is the emission of a fresh name x on a, and x (resp. y) stands for an output

2

(resp. input) where the value being transmitted is irrelevant. In Fusions, unlike
in the π-calculus, the process that creates successively two fresh names x and y
cannot prevent the context from equating (“fusing”) x and y. Hence, in order
for the equivalence to hold, it is necessary to add a third summand on the right,
[x = y]τ . This example suggests that πP gives a better control on restricted
names than existing fusion calculi. This issue also motivated the study of two
variants of fusion calculi that have a refined notion of restriction [4, 5].

The main purpose of the present work is to deepen the study of the be-
havioural theory of πP, in an untyped setting. We define a Labelled Transition
System (LTS) for πP, and show that the induced notion of bisimilarity, written
∼, characterises ' (Section 3). It can be noted that [13] presents a characteri-
sation of barbed congruence, using an LTS that is rather ad hoc, because it is
based on the definition of the reduction relation. Unlike the latter, the LTS we
present here is structural.

Defining a structural LTS which yields a characterisation of barbed congru-
ence is rather standard in process calculi theory. The main advantage brought
by bisimulation is to make behavioural equivalence proofs more tractable, by
avoiding universal quantifications over contexts. Additionally, in our case, de-
signing the LTS allows us to gain a better understanding of the operational
aspects of πP, bringing to light peculiarities that are specific to our calculus.

Indeed, the LTS reveals interesting aspects of interaction in πP. An im-
portant observation is related to the interplay between arcs and the restriction
operator. It is for instance possible for a process to react to an input offer on
some channel, say c, without being actually able to perform an output on c.
This is the case for P0 , (νa)(a(x).0 | a/c), as P0 | cu can perform a reduction
(note that P0 could do an output on c if the arc a/c was replaced with c/a). This
phenomenon leads to the addition of a new type of labels in the LTS, corre-
sponding to what we call protected actions, that interact with a restricted set
of other actions (accordingly, we introduce protected names, which correspond
to (usages of) names where a protected action occurs: intuitively, name c is
protected in P0). As expected, protected actions correspond to observables in
the reduction-based semantics supporting the definition of ' (e.g. the protected
action from P0 can be observed using cu.)

Arc processes do not have transitions, but they induce relations between
names, which in turn influence the behaviour of processes. Accordingly, strong
bisimilarity, ∼, not only tests transitions, but also has a clause to guarantee
that related processes entail the same conditions.

Finally, the LTS also includes a label [ϕ]τ , expressing “conditional synchro-
nisation”. Intuitively, process a | b is not able to perform a τ transition by itself,
but it should be when the environment entails a g b. Hence, in order for our
LTS to be compositional, we include labels of the form [ϕ]τ , interpreted as “τ
under the condition ϕ”.

In Section 4, we provide a second characterisation of barbed congruence, by
presenting a set of laws that define an axiomatisation of '. Algebraic laws help
analysing the behaviour of the constructs of the calculus and their interplay. We

3

present a sample of behavioural equalities, and explain how they can be derived
equationally, in Section 4.1.

The axiomatisation we give is less simple than, say, the one for Fusions
in [20], for two reasons: first, we manipulate preorders between names rather
than equivalence relations. Second, the preorder is explicitly represented in
processes, so that some equational laws must describe the interplay between
processes and the preorder relation. On the contrary, such aspects are dealt
with implicitly in Fusions. We show how our ideas can be adapted to provide
an axiomatisation of behavioural equivalence for Explicit Fusions in Section 4.3.

The axiomatisation exploits the idea that πP processes have a state com-
ponent, corresponding to the preorder induced by arcs. Several laws in the
axiomatisation express persistence of the state component (the state can only
be extended along computation). Moreover, the restriction operator prevents
the state from being globally shared in general: for instance, in process P0

above, name a can be used instead of c, but is only known inside the scope of
(νa). All in all, the handling of restriction in our axiomatisation requires more
care than is usually the case, due to the necessity to express the “view” that
subprocesses have on the preorder of names.

To present the axiomatisation, we renounce minimality. The syntax of the
calculus in this paper differs from the one in [13]: we include bound prefixes
and sums with conditions, as it is customary for axiomatisations for the π-
calculus [19, 23]1. We compare the calculus from [13] with ours in Remark 1
and Proposition 2. We show that the differences are unimportant: the calculus
from [13] can be encoded into ours and the behavioural equivalence is unaffected.
We discuss in Section 3.4 a presentation of transitions and bisimilarity based on
free prefixes.

We focus in this paper on a finite calculus. This is sufficient to illuminate
the main aspects of the behavioural theory of processes. We do not expect
any particular difficulty to arise, in the definition of labelled transitions and
bisimilarity, from the extension of πP with a replication operator.

Outline. After introducing πP and barbed congruence in Section 2, Section 3
is devoted to the characterisation based on the LTS, and Section 4 presents
the axiomatisation. In passing, we discuss an LTS for a calculus featuring free
prefixes (Section 3.4) and an axiomatisation for the calculus of Explicit Fusions
(Section 4.3). Related work is discussed throughout the paper, where it is
relevant.

This paper is an extended version of [14]. We provide here more detailed
explanations about how congruence of bisimilarity is derived (in Section 3), for
which the handling of name preorders involves technicalities which could not be

1 It can be noted that the axiomatisation of Fusions given in [20] relies only on free input
and output, and treats bound prefixes as derived operators. We think that, for πP, handling
prefixes for bound and protected actions as derived operators would introduce further technical
complications that would make the axiomatisation unnecessarily verbose and obscure.

4

presented in [14], for lack of space. In Section 4, we provide several proofs that
were omitted in [14]. The LTS based on free prefixes (Section 3.4) is also new
w.r.t. [14]. Finally, we provide a complete axiomatisation for Explicit Fusions,
which was only sketched in [14].

2. πP: Reduction-Based Semantics

2.1. The Calculus: Preorders and Processes

We consider a countable set of names a, b, c, . . . , x, y, . . . , and define condi-
tions (ϕ), extended names (α, β), prefixes (π) and processes (P,Q) as follows:

conditions ϕ ::= a ≺ b
∣∣ a g b extended names α, β ::= a

∣∣ {a}
prefixes π ::= α(x)

∣∣ α(x)
∣∣ [ϕ]τ

processes P,Q ::= P | Q
∣∣ (νa)P

∣∣ b/a ∣∣ Σi∈Iπi.Pi

There are two forms of conditions, ranged over with ϕ: ϕ = a ≺ b is read “b
is above a” and ϕ = a g b is read “a and b are joinable”. In both cases, we
have n(ϕ) = {a, b}. We explain in Definition 2 how we extend relations ≺ and
g to extended names. When n(ϕ) = {a}, we say that ϕ is reflexive and we
abbreviate prefix [ϕ]τ as τ . Condition a ≺ b is ensured by the arc process b/a.

In a prefix α(x) or α(x), we say that extended name α is in subject position,
while x is in object position. As discussed in Section 1, extended names include
regular and protected names, of the form {a}, which can be used in subject
position only. The intuition behind them is that there cannot be communi-
cations between two protected names, but all other combinations are allowed.
We call protected prefix a prefix where the subject is a protected name. A
prefix of the form [ϕ]τ is called a conditional τ , while other prefixes are called
visible. Bound and free names for prefixes are given by: bn([ϕ]τ) = ∅ and
bn(α(x)) = bn(α(x)) = {x}, fn([ϕ]τ) = n(ϕ), fn(α(x)) = fn(α(x)) = n(α) with
n(a) = n({a}) = {a}.

In a sum process, we let I range over a finite set of integers. 0 is the inactive
process, defined as the empty sum. We use S to range over sum processes of the
form Σi∈Iπi.Pi, and write π.P ∈ S if π.P is a summand of S. We sometimes
decompose sum processes using the binary sum operator, writing, e.g., S1 + S2

(in particular, S+ 0 = S). We abbreviate π.0 as π, and write α(x).P simply as
α.P when the transmitted name is not relevant, and similarly for α. In (νa)P ,
(νa) binds a in P , and prefixes α(x) and α(x) bind x in the continuation process.
The set of free names of P , fn(P), is defined in the usual way. P{b/a} is the
process obtained by substituting a with b in P , in a capture-avoiding way.

We use an overloaded notation, and define processes representing conditions:

a g b , (νu)(u/a | u/b) a ≺ b , b/a . (1)

5

Below, Γ ranges over sets of conditions. We define Γ ` ϕ, meaning that Γ
implies ϕ, and P B Γ, meaning that P entails ϕ for all ϕ ∈ Γ:

`-refl

Γ ` a ≺ a

`-in
ϕ ∈ Γ

Γ ` ϕ

`-mirror
Γ ` b g a
Γ ` a g b

`-trans
Γ ` a ≺ b
Γ ` b ≺ c
Γ ` a ≺ c

`-join
Γ ` a ≺ b
Γ ` c ≺ b
Γ ` a g c

`-extjoin
Γ ` a ≺ b
Γ ` b g c
Γ ` a g c

B-arc

b/aB a ≺ b

B-combine
P B Γ Γ ` ϕ

P B ϕ

B-par-l
P B ϕ

P | QB ϕ

B-par-r
QB ϕ

P | QB ϕ

B-res
P B ϕ a /∈ n(ϕ)

(νa)P B ϕ

As an example, the reader might check that (νu)(u/a | u/b) | b/c B a g c. Note
how a ≺ u and b ≺ u entail ag b, which then extends outside the scope of (νu).
We define Φ(P) = {ϕ | P B ϕ}, the set of all conditions entailed by P .

2.2. Reduction Semantics and Barbed Congruence

Definition 1. Structural congruence, written ≡, is the smallest congruence sat-
isfying α-conversion for restriction, and the following axioms:

P | 0 ≡ P (P | Q) | R ≡ P | (Q | R) P | Q ≡ Q | P

(νa)0 ≡ 0 (νc)(νd)P ≡ (νd)(νc)P (νa)(P | Q) ≡ (νa)P | Q if a /∈ fn(Q)

Σi∈Iπi.Pi≡Σi∈Iπσ(i).Pσ(i) σ a permutation of I

Relations ≡ and B are used to define the reduction of processes. We rely on
B and on Definition 2 to infer interactions of processes on extended names. This
let us introduce reduction-closed barbed congruence, along the lines of [13].

Definition 2 (Conditions on extended names). Notations αg β and α ≺
β, for conditions relating extended names, are introduced as follows:

g b {b}
a ag b a ≺ b
{a} b ≺ a undefined

≺ b {b}
a a ≺ b a g b
{a} undefined b ≺ a

Undefined conditions cannot be entailed, e.g., P 6B {a}g{a} and P 6B {a}≺ a.

Definition 3 (Reduction). Relation 7→ is defined by the following rules:

RB α g β x 6= y

R | α(x).P + S1 | β(y).Q+ S2 7→ R | (νxy)(x/y | P | Q)

P ≡ 7→ ≡ P ′

P 7→ P ′

RB ϕ

R | [ϕ]τ.P + S 7→ R | P
P 7→ P ′

P | R 7→ P ′ | R
P 7→ P ′

(νa)P 7→ (νa)P ′

6

Definition 4 (Barbs). We write P ↓a if P | a(x).ω 7→ P ′, where P ′ is a
process in which ω is unguarded, and ω is a special name that does not appear
in P . We define similarly the barb ↓a, using the tester a(x).ω.

We can remark that P0 ↓c, where P0 = (νa)(a(x).0 | a/c) as in Section 1.

Definition 5. Barbed congruence, ', is the largest congruence that satisfies:

• if P ↓a and P ' Q then Q ↓a, and similarly for ↓a, and

• if P 7→ P ′ and P ' Q then for some Q′, Q 7→ Q′ and P ′ ' Q′.

The remainder of the paper is devoted to the presentation of two character-
isations of '. We first comment on the definition of πP given above.

One could consider an alternative version of reduction, called “eager”, whereby
arcs can rewrite prefixes in one step of computation, yielding, e.g., d/c | c(x).P 7→
d/c | d(x).P . It appears in [13] that the present semantics is more compelling
(e.g. a(x).a(y) would not be equivalent to a(x) | a(y) in the eager version).

Remark 1 (Encodability of free and protected prefixes). In πP, arcs act
like “instantaneous forwarders”. This allows us to define an encoding [·]f from
a calculus with free prefixes to a calculus with bound prefixes as follows (x is
chosen fresh and [·]f preserves other operators of the calculi.):

[ab.P]f , a(x).([P]f | x/b) [ab.P]f , a(x).([P]f | b/x) .

Arcs x/b and b/x are installed in opposite directions, which reflects the asymme-
try of πP2. We return to this encoding below (Proposition 2), and show that it
allows us to preserve and reflect behavioural equivalence in [13] into our calcu-
lus. We can also encode protected prefixes as follows (u is chosen fresh):

[{a}(x).P]p , (νu)(u/a | u(x).[P]p) [{a}(x).P]p , (νu)(u/a | u(x).[P]p) .

Although protected prefixes are in this sense redundant, we do not treat them as
derived operators, to simplify the presentation (in particular in Section 4).

3. A Labelled Transition System for πP

3.1. LTS and Bisimilarity

The LTS defines transitions P
µ−→ P ′, where the grammar for the labels, µ, is

the same as the one for prefixes π. We comment on the rules, given in Table 1.
The first two rules correspond to the firing of visible prefixes. The transi-

tion involves a fresh name x, upon which the participants in a communication
“agree”. Name y remains local, via the installation of an arc, according to the
directionality of the prefix. (Adopting a rule with no arc installation would yield
a more complex definition of ∼). The rule for the [ϕ]τ prefix is self explanatory.

2The encoding of the output prefix is the same as for πI in [22], with arcs replacing “links”.

7

→-in
x /∈ n(α) ∪ {y} ∪ fn(P)

α(y).P
α(x)−−−→ (νy)(x/y | P)

→-out
x /∈ n(α) ∪ {y} ∪ fn(P)

α(y).P
α(x)−−−→ (νy)(y/x | P)

→-tau

[ϕ]τ.P
[ϕ]τ−−→ P

→-comm-l

P
α(x)−−−→ P ′ Q

β(x)−−−→ Q′

P | Q [αgβ]τ−−−−−→ (νx)(P ′ | Q′)

→-tau-B

P
[ϕ2]τ−−−→ P ′ P B Γ Γ, ϕ1 ` ϕ2

P
[ϕ1]τ−−−→ P ′

→-in-B

P
α(x)−−−→ P ′ P B α ≺ β

P
β(x)−−−→ P ′

→-out-B

P
α(x)−−−→ P ′ P B α ≺ β

P
β(x)−−−→ P ′

→-res

P
µ−→ P ′ a /∈ fn(µ)

(νa)P
µ−→ (νa)P ′

→-par-l

P
µ−→ P ′ bn(µ) ∩ fn(Q) = ∅

P | Q µ−→ P ′ | Q

→-sum

πi.Pi
µ−→ P ′

Σiπi.Pi
µ−→ P ′

Table 1: LTS for πP. Symmetric versions of the two rules involving | are omitted.

The rule describing communication follows the lines of the corresponding rule
for 7→; no arc is installed (but arcs are introduced in the prefix rules).

The three rules mentioning B are called preorder rules. The two preorder
rules for visible actions exploit ≺ defined on extended names in Definition 2.
Note that the condition involving B is the same in these two rules. For instance,
if P

a(x)−−−→P ′ and P B a ≺ c, we can derive P
c(x)−−→P ′. In this case, P B a ≺ {c}

is also derivable, hence P
{c}(x)−−−→P ′. We can also check that P0 from Section 1

satisfies P0
{c}(y)−−−→, because a(x).0 | a/cB c g a (and hence a ≺ {c}).

The other preorder rule can be used to modify conditional τs involved in a
transition. As an example, let P1 , (a(x).Q | n/u) | (u(y).R | n/a). Process P1

can perform a τ transition: the two arcs can, intuitively, let the output at a and
the input at u interact at name n. Technically, this can be derived by inferring
a [agu]τ−−−−→ transition (from the output on the left and the input on the right),
which can then be turned into a τ transition, exploiting the fact that the whole
process entails a g u. Since arcs outside of the process could also contribute to
this entailment, we add a g u to the label, rather than using a side condition.

Finally, the congruence rules, on the last line of Table 1, are as expected.

Definition 6 (∼). A symmetric relation R is a bisimulation if P R Q implies:

• If P B ϕ then QB ϕ.

• If P
α(x)−−−→ P ′, with x /∈ fn(Q), then there is Q′ such that Q

α(x)−−−→ Q′ and
P ′ R Q′; we impose the same condition with α instead of α.

8

• If P
[ϕ]τ−−→ P ′ then there is Q′ such that Q

[ϕ]τ−−→ Q′ and P ′ | ϕ R Q′ | ϕ.

Bisimilarity, written ∼, is the greatest bisimulation.

This definition can be related to the efficient bisimulation from [25]. In the
last clause for [ϕ]τ , we add ϕ in parallel; indeed, demanding P ′ R Q′ is too
strong a requirement: arcs are permanent processes, so a context triggering the
corresponding reduction necessarily entails ϕ (even after reductions).

Remark 2. Our LTS does not have rules for opening and closing the scope of
a restriction. Instead, we rely on arcs in πP to handle scope extrusion. To see
this, consider the following πP transition where a private name c is emitted:

a(c).P
a(x)−−−→ (νc)(c/x | P) .

Name x is visible in the label, and arc c/x is installed. Through x, the envi-
ronment can affect c, so that πP actually implements scope extrusion via arcs,
without the need to move restrictions. We have:

a(c).P | a(y).Q
τ−→ (νx)((νc)(c/x | P) | (νy)(x/y | Q))
' (νc)(νy)(P | c/y | Q) .

In particular, in the encoding from the π-calculus to πP given in [13], when a
fresh name is emitted, it is extruded, and we have (JP K is the encoding of P):

Ja(y).Q | (νb)ab.P K τ−→∼ J(νb)(Q{b/y} | P)K .

3.2. Towards the Characterisation Theorem

In order to present the proof that barbed congruence coincides with the
bisimilarity induced by our LTS, we first need to establish several preliminary
technical results, about relations `, B and v .

Mechanisation of some proofs. We have carefully separated proofs involving te-
dious case enumerations, which we have verified using the Coq proof system [8],
from other proofs involving features that are harder to formalise, like binding
mechanisms. Case analyses being both easy to deal with in Coq and error-
prone in manual proofs, this provides us with a good trade-off between trust
and bookkeeping proofs. The proof script files we mention throughout this
paper are available from [18].

3.2.1. On the ` relation.

To handle some case analyses, we decompose `, using an additional relation,
written
. The idea is that the transitive closure of
 is `.

The predicate ϕ1, ϕ2
 ϕ3 is defined as follows (note how the second line is
the symmetric variant of the first):

a≺b, b≺c
a≺c a≺c, b≺c
agb agb, c≺a
cgb agb, c≺b
agc

b≺c, a≺b
a≺c b≺c, a≺c
agb c≺a, agb
cgb c≺b, agb
agc

9

We write ϕ1
ϕ2 ϕ3 whenever ϕ1, ϕ2
 ϕ3 and we write
P for the union of
all
ϕ for P B ϕ. Intuitively, we use
P to decompose in smaller steps the
implications between conditions that hold because of conditions entailed by P .

Lemma 1 shows that if ϕ can be decomposed, then so can
ϕ.

Lemma 1. If ϕ1, ϕ2
 ϕ then
ϕ⊆ (
ϕ1

ϕ2
∪
ϕ2

ϕ1
).

Proof. By case analysis on the
 predicate (see proof script in [18].) �

Relations ` and
 relate the same conditions:

Lemma 2. If ϕ1, ϕ2
 ϕ3 then ϕ1, ϕ2 ` ϕ3. Conversely, if Γ ` ϕ then ψ
ψ1

. . .
ψn ϕ for some reflexive ψ and for some ψ1, . . . , ψn ∈ Γ.

Proof. The first part is trivial: each rule for
 is simulated by (three) rules
for `. The second part follows from the fact that (
ϕ) ⊆ (
ψ1

. . .
ψn

ζ) for

some ψ1, . . . , ψn ∈ Γ and some reflexive ζ, which we prove by induction on Γ ` ϕ
(Lemma 1 covers the rules `-trans, `-join, `-extjoin). �

Relation
P is semi-transitive (it can always be reduced to two iterations):

Lemma 3. (
P)∗ ⊆ (
P
P).

Proof (Sketch). Suppose ϕ1
P . . .
P ϕ3. One obtains ϕ3 from ϕ1 by
appending ψs such that P B ψ at the left or at the right of ϕ1. We can in fact
append all left ψs at first (an operation that can be done in one
P step), and
only then, append all right ψs (the other
P step). (See proof script in [18].) �

The proof can be adapted to refine Lemma 3 with a better control on names:

Lemma 4. Suppose ϕ1

∗
P ϕ4 and n(ϕi) = {ai, bi}. There are ϕ2, ϕ3 such that

ϕ1
P ϕ2
P ϕ4, ϕ1
P ϕ3
P ϕ4, with n(ϕ2) = {a1, b4} and n(ϕ3) = {a4, b1}.

Relation
P |Q can be decomposed into
P and
Q.

Lemma 5.
P |Q⊆ (
P ∪
Q)∗.

Proof. We prove by induction on P | QBϕ2 that for all ϕ1 and ϕ3, if ϕ1, ϕ2

ϕ3 then ϕ1(
P ∪
Q)∗ ϕ3. There are three cases. For B-par-l we know that
P Bϕ2 so ϕ1
P ϕ3 and for B-par-r we get the same way ϕ1
Q ϕ3. The case
for the rule B-combine is handled using Lemma 2. �

3.2.2. On the B relation.

Lemmas 6-8 are proved using simple inductions on predicate B. A context C
is a process with one hole [·]; we write C[P] for C with [·] replaced with P .

Lemma 6. If P B ϕ and n(ϕ) \ fn(P) 6= ∅, then ϕ is reflexive.

Lemma 7. If Φ(P) ⊆ Φ(Q) then Φ(C[P]) ⊆ Φ(C[Q]).

10

Lemma 8. If P B ϕ then Φ(P | ϕ) = Φ(P).

Lemma 9. If P ≡ Q then Φ(P) = Φ(Q).

Proof. By induction on the derivation of P ≡ Q. In most cases we show
Φ(P) ⊆ Φ(Q) and Φ(Q) ⊆ Φ(P) separately, and by induction on B (we assume
the last rule is not B-combine, since this case is immediate).

We focus on the following cases involving restrictions:

1. (νa)P ≡ (νb)P{b/a} when b /∈ fn(P): the last rule, and the one we apply,
is B-res and we only need to prove PBϕ ⇒ P{b/a}Bϕ when a, b /∈ n(ϕ).
More generally P B ϕ⇒ Pσ B ϕσ for arbitrary substitutions σ.

2. νa(P | Q) ≡ (νaP) | Q with a /∈ fn(Q). Intuitively, we need to put
together all contributions from P so that they are independent of Q. First,
as before, from νa(P | Q)B ϕ we get P | QB ϕ.
We treat the case where ϕ = b0 g c0 (the other cases are simpler). The
derivation of P | Q B ϕ is built using several B-combines involving pro-
cesses P and Q, which we summarise as follows: there exist b0, . . . , bn and
c0, . . . , cm such that for each ζ ∈ {bngcm, b0≺b1, . . . , bn−1≺bn, c0≺c1, . . . ,
cm−1≺cm}, we have either P B ζ or QB ζ. We eliminate occurrences of a
in the bis and the cjs. For this, we proceed as follows:
(a) when a ∈ n(ζ) we replace Q B ζ with P B ζ (using Lemma 6 as

a /∈ fn(Q)).
(b) Hence, if bi = a then P B bi−1 ≺ a and P B a ≺ bi+1, so using B-

combine we replace them with P B bi−1 ≺ bi+1.
But if i = n, since P B bn g cm and a = bn, we deduce P B bn−1 g cm
(the case i = 0 is not possible since a /∈ n(φ)).

(c) We continue as long as a appears in any of the bi or cj .

We are left with a set of formulas ζ (entailing ϕ) such that a /∈ n(ζ)
and either P B ζ or Q B ζ, and hence (νa)P | Q B ζ. From this we get
(νa)P | QB ϕ by applying rule B-combine n+m times. �

3.2.3. On the v relation.

Definition 7. We define a relation vϕ between labels as follows: (i) α1(x) vϕ

α2(x) and α1(x) vϕ α2(x) when ϕ = α2 ≺ α1, and (ii) [ϕ1]τ vϕ [ϕ2]τ when
ϕ1, ϕ ` ϕ2.We write vP for the smallest preorder containing all vϕ when P Bϕ.

Intuitively, η vP µ means that label µ is less general than η, given some
condition (ϕ above) enforced by P . For instance, we have {a}(x) v0 a(x). This
notion is used in Lemma 17 to reason about transitions of processes.

Similarly as
ϕ, when ϕ can be decomposed, so can vϕ:

Lemma 10. If ϕ1, ϕ2 ` ϕ then (vϕ) ⊆ (vϕ1vϕ2) ∪ (vϕ2vϕ1).

Proof. We suppose µvϕ η. If µ is a [ϕ]τ , Lemma 1 is enough to conclude.
Otherwise, we make an exhaustive case analysis on ϕ1, ϕ2 ` ϕ and µ vϕ η, for
instance: if a ≺ c, b ≺ c ` a g b and {a}(x)vagb b(x) then {a}(x)va≺c c(x) and
c(x)vb≺c b(x). (The complete case analysis appears in the proof script [18].) �

11

On extended names, ≺ is transitive and g can be extended on the left (or
on the right), but cannot in general be derived from ≺, whereas it is the case for
regular names. From this lemma, we get tools to manipulate the vP relation.

Lemma 11 (Composing relations ≺ and g). 1. If α ≺β and β ≺γ are
defined, then so is α ≺γ and α ≺β, β ≺γ ` α ≺γ.

2. If α ≺ β and β g γ are defined, then so is αg γ and α ≺ β, β g γ ` αg γ.

3. In general α ≺ β and γ ≺ β do not imply α g γ.

Proof. The first two items are trivial after a case analysis on α, β, γ, we give
an example for each. For (1) (α, β, γ) = (a, {b}, {c}) we need a g b, c ≺ b ` a g c
(which holds by right extension of g). For (2) (α, β, γ) = ({a}, {b}, c) we need
b ≺ a, c ≺ b ` c ≺ a (which holds by transitivity of ≺). Finally a counterexample
for (3) is for α = a, β = {b} and γ = c, since α ≺ β = a g b and γ ≺ β = c g b
do not entail α g γ = a g c (g is not transitive). (See proof script [18].) �

Corollary 1. If α(x) vP α1(x) and α g β is defined, then α1 g β is defined
and [α g β]τ vP [α1 g β]τ .

Lemma 12. vP |Q ⊆ (vP ∪ vQ)∗.

Proof. For visible prefixes, we conclude by transitivity of ≺ on extended names
(Lemma 11). For conditional τ ’s, this is a consequence of Lemma 5.

Lemma 13. If µ vP |Q µ′ and a /∈ fn(µ), fn(µ′), fn(Q) then µ v(νaP)|Q µ′.

Proof. We use Lemma 12 to obtain a sequence µ0, µ1, . . . , µn with µ = µ0 and
µ′ = µn and µi v

ϕi µi+1 with for each i, P B ϕi or Q B ϕi. W.l.o.g. we can
suppose when a ∈ n(ϕi) that P B ϕi (indeed, if instead we had QB ϕi, then ϕi
would be trivial and thus P B ϕi).

We then put together all subsequences ϕi, . . . , ϕj entailed by P , and do the
same with Q, to obtain after some reindexing: µj1 vP µj2 vQ µj3 vP . . . so that
for all k, a /∈ fn(µjk). We can then write µj1 vνaP µj2 vQ µj3 vνaP . . ., and we
are able to conclude that µ v(νaP)|Q µ. �

Lemma 14. If µ vP |Q µ′ and a /∈ fn(µ), fn(Q) then for some λ such that
a /∈ fn(λ), µ v(νaP)|Q λ vP µ

′.

Proof. As in the proof of Lemma 13, we obtain µ = µj1 vP µj2 vQ . . . vP
µjn = µ′, except that a may appear in µ′ = µjn , but not in any other µ = µjk
if k < n. We choose λ = µjn−1

, the rest of the proof is similar. �

Lemma 15. If P
µ−→ P ′ and η vP µ then P

η−→ P ′. Conversely, whenever

P
η−→ P ′, there exists µ such that η vP µ and P

µ−→ P ′, of which there is a proof,

not bigger than the one for P
η−→ P ′, that does not end with a preorder rule.

Proof. Both directions are proved by simple inductions. �

12

3.3. The Characterisation Theorem
We can now present the proof that barbed congruence and the bisimilarity

induced by our LTS coincide, Theorem 1 below. We first present some auxiliary
lemmas.

3.3.1. Results about transitions.

Lemma 16. If (νa)P
µ−→ P1 then P1 = (νa)P ′ for some P ′ such that P

µ−→ P ′.

Proof. Using Lemma 15 we know that (νa)P
µ1−→ P1 for some µ1 such that

µ vνaP µ1, and that this transition is coming from P
µ1−→ P ′ with P1 = (νa)P ′.

Since Φ(νaP) ⊆ Φ(P), we know µ vP µ1, so we can derive P
µ−→ P ′. �

The proof of the next lemma, stating that transitions commute with ≡,
follows from an analysis similar to the proof of Lemma 9.

Notation 1. We adopt the following notation in writing derivations, to denote
either an application of the first part of Lemma 15 (i.e. an application of several

preorder rules), or a recursive case analysis on the rules deriving P
µ−→ P ′ until

a non-preorder rule is reached, by application of the second part of Lemma 15.

P
µ′−→ P ′

[µ vP µ
′]

P
µ−→ P ′

Lemma 17. If P ≡ Q and P
µ−→ P ′ then Q

µ−→≡ P ′.

Proof. More generally, we prove by induction on the derivation of P ≡ Q that

for all µ, ((P
µ−→ P ′ ⇒ Q

µ−→≡ P ′) and (Q
µ−→ Q′ ⇒ P

µ−→≡ Q′)). Thanks to this
formulation, precongruence is handled by transition induction and equivalence
properties are trivial. We give the remaining most complicated cases, one for

associativity and one for extrusion. Then we perform an induction on P
µ−→ P ′.

We factor out the cases corresponding to preorder rules using Lemmas 15 and 9,
and so we assume that the last rule is not a preorder rule.

1. (P | Q) | R ≡ P | (Q | R): we assume the last rule is →-par-l. We

use Lemma 15 to get µ vP |Q µ1, then a →-par-r rule to get Q
µ1−→ Q′.

Getting back P | (Q | R)
µ1−→ P | (Q′ | R) is easy, what is more tricky is

to get right the label µ: for that we use again Lemma 15 thanks to the
fact that µ vP |(Q|R) µ1, in turn implied by µ vP |Q µ1 (since Φ(P | Q) ⊆
Φ((P | Q) | R) = Φ(P | (Q | R)) by rule B-par-l and Lemma 9).

par-l

par-r
Q

µ1−→ Q′

P | Q µ1−→ P | Q′[
µ vP |Q µ1

]
P | Q µ−→ P | Q′

(P | Q) | R µ−→ (P | Q′) | R

Q
µ1−→ Q′

Q | R µ1−→ Q′ | R
par-l

P | (Q | R)
µ1−→ P | (Q′ | R)

par-r[
µ vP |(Q|R) µ1

]
P | (Q | R)

µ−→ P | (Q′ | R) .

13

2. νa(P | Q) ≡ (νaP) | Q: any transition from νa(P | Q) must come from
one from P | Q. After an application of Lemma 15 we have µ vP |Q µ1

with a transition µ1 that we can break into transitions from P and/or Q,
depending on the last rule: we treat the case for →-par-l and the case
of →-com-* (the case for →-par-r being simpler) and use Lemma 15
multiple times.
(a) →-par-l: action µ1 (coming from P) may contain a. With Lemma 14

we obtain a transition along λ (a /∈ fn(λ)) to which we can apply Q’s
original role in the transformation of µ1 into µ (combined to the role
of νaP). The following derivations illustrate the reasoning exposed
above.

P
µ1−→ P ′

P | Q µ1−→ P ′ | Q[
µ vP |Q µ1

]
P | Q µ−→ P ′ | Q a /∈ n(µ)

(νa)(P | Q)
µ−→ (νa)(P ′ | Q)

P
µ1−→ P ′

[λ vP µ1]

P
λ−→ P ′ a /∈ n(λ)

νaP
λ−→ νaP ′

(νaP) | Q λ−→ (νaP ′) | Q[
µ v(νaP)|Q λ

]
(νaP) | Q µ−→ (νaP ′) | Q

(b) →-com-l: (→-com-r is symmetric) transition µ = [ϕ]τ is obtained
from transitions α(x) and γ(x) such that [ϕ]τ vP |Q [α g γ]τ . Since
a /∈ fn(Q) we already know a 6= n(γ).
Suppose first that a 6= n(α). Then we can obtain the transition α
from (νa)P as well, then the [αg γ]τ transition, and we conclude to
get [ϕ]τ by Lemma 13.
The interesting case is when a = n(α). We defer to below the proof
of the following implication:

[ϕ]τ vP |Q [αg γ]τ =⇒ ∃β a 6= n(β) ∧
{

[ϕ]τ vP |Q [β g γ]τ
P B α ≺ β (2)

and we remark that it implies β(x) vP α(x). We can now use
Lemma 15 to easily build back the [ϕ]τ transition from (νaP) | Q,
as follows:

P
α(x)−−−→ P ′ Q

γ(x)−−−→ Q′

P | Q [αgγ]τ−−−−−→ (νx)(P ′ | Q′)[
[ϕ]τ vP |Q [α g γ]τ

]
P | Q [ϕ]τ−−→ (νx)(P ′ | Q′) a /∈ n(ϕ)

(νa)(P | Q)
[ϕ]τ−−→ (νa)(νx)(P ′ | Q′)

P
α(x)−−−→ P ′[

β(x) vP α(x)
]

P
β(x)−−−→ P ′ a /∈ n(β)

νaP
β(x)−−−→ νaP ′ Q

γ(x)−−−→ Q′

(νaP) | Q [βgγ]τ−−−−→ (νx)((νaP ′) | Q′)[
[ϕ]τ v(νaP)|Q [β g γ]τ

]
(νaP) | Q [ϕ]τ−−→ (νx)((νaP ′) | Q′)

We prove now (2). Using Lemma 12 we decompose [ϕ]τ vP |Q [αgγ]τ

into a sequence of vψ with P Bψ∨QBψ. We prove (2) by induction

14

on this sequence, decomposing it “from the right” into [ϕ]τ vP |Q
η vψ [αg γ]τ : we assume (2) holds when [αg γ]τ is replaced with η
and we decompose η vψ [αg γ]τ into easy cases:

• η = [β g γ]τ and ψ = α ≺ β and n(α) 6= n(β):
in this case, P B ψ and since [ϕ]τ vP |Q [β g γ]τ we are done.

• η = [β g γ]τ and ψ = α ≺ β and n(α) = n(β):
in this case, P B ψ (even if Q B ψ). We use the induction hy-
pothesis to get β′ such that [ϕ]τ vP |Q [β′gγ]τ and n(β′) 6= n(β)
and P B β ≺ β′. This β′ is enough, since P B α ≺ β′.

• η = [αg δ]τ with n(δ) = a:
we interrupt the induction since we can derive a plain τ , hence
any [ϕ]τ that we want.

• η = [αg δ]τ and ψ = γ ≺ δ and P B ψ or QB ψ:
we use the induction hypothesis to get the wanted β and we
replay ψ on top of it (the IH gives [ϕ]τ vP |Q [βgδ]τ , from which
through P,QB γ ≺ δ it is easy to get [ϕ]τ vP |Q [β g γ]τ).

This concludes the case analysis. �

Lemma 18. ≡ is a bisimulation.

Proof. This follows from Lemmas 9 and 17. The correspondence between
transitions is exact, hence the only non-trivial case is for the [ϕ]τ transition
because one requires P ′ | ϕ ≡ Q′ | ϕ instead of just P ′ ≡ Q′. This holds
because ≡ is a congruence. �

Definition 8 (Bisimulation up to ∼). A relation R is a bisimulation up to
bisimilarity if it validates the clauses in the definition of ∼ (Definition 6), except
that we require P ′ ∼R∼ Q′ instead of P ′ R Q′ and (P ′ | ϕ) ∼R∼ (Q′ | ϕ)
instead of (P ′ | ϕ) R (Q′ | ϕ).

Lemma 19. If R is a bisimulation up to bisimilarity, then R⊆∼.

Proof. We prove ∼R∼ is a bisimulation. The only unusual transition µ is

when µ = [ϕ]τ , but from P ∼ P1 R Q1 ∼ Q and P
µ−→ P ′ we know:

• that P1
µ−→ P ′1 and (P ′ | ϕ) ∼ (P ′1 | ϕ) from the ∼ game,

• that Q1
µ−→ Q′1 and (P ′1 | ϕ) ∼R∼ (Q′1 | ϕ) from the R up-to game,

• that P
µ−→ P ′ and (Q′1 | ϕ) ∼ (Q′ | ϕ) from the second ∼ game.

We conclude by transitivity of ∼ since (P ′ | ϕ) ∼∼R∼∼ (Q′ | ϕ). �

Lemma 20. If P B ϕ then P | ϕ ∼ P .

15

Proof. We prove that R = {(P | ϕ, P) | P Bϕ} is a bisimulation up to ≡ (and
thus is included in ∼ by Lemmas 19 and 18). First, all transitions from P can
be done by P | ϕ; sometimes we have to relate P | ψ to (P | ϕ) | ψ which we
rewrite as (P | ψ) | ϕ with ≡ (and indeed (P | ψ) | ϕ R (P | ψ)).

Second, suppose P | ϕ µ−→ P1. Using Lemma 15 we get µ1 such that µ vP |ϕ

µ1, and a proof of P | ϕ µ1−→ P ′ with a non preorder rule as last rule. This rule

must be a par rule coming from P so in fact P1 = P ′ | ϕ with P
µ1−→ P ′. Since

Φ(P | ϕ) = Φ(P) by Lemma 8, we know that µ vP µ1. We can apply Lemma 15

again to deduce P
µ−→ P ′, and indeed P ′ | ϕ R P ′. �

Lemma 21. P ∼ Q implies (νa)P ∼ (νa)Q for all a.

Proof. We prove R , {(νaP, νaQ) | P ∼ Q} is a bisimulation up to bisimilar-
ity (Lemma 19), which is relatively easy using Lemma 16. The only interesting

case is for a conditional τ transition. If νaP
[ϕ]τ−−→ νaP ′ then P

[ϕ]τ−−→ P ′ and

using ∼, Q
[ϕ]τ−−→ Q′ with (P ′ | ϕ) ∼ (Q′ | ϕ). Since we want to relate (νa)P ′ | ϕ

and (νa)Q′ | ϕ we ∼-rewrite them into (νa)(P ′ | ϕ) and (νa)(Q′ | ϕ) (using
Lemma 18) which are indeed related through R. The condition about B is
ensured by compositionality of B (Lemma 7). �

Definition 9 (Bisimulation up to ∼ and ν). A relation R is a bisimulation
up to restriction and bisimilarity if it validates the clauses of the usual bisim-
ulation, except that the outcomes of the transitions, P1 and Q1, are requested
to satisfy P1 ∼ (νã)P2 and Q1 ∼ (νã)Q2 with P2 R Q2, where ã stands for a
(possibly empty) tuple of names.

Lemma 22. If R is a bisimulation up to restriction and bisimilarity then R ⊆ ∼.

Proof. We write Rν for {(νã)P, (νã)Q) | P R Q}. We know that R ⊆
S , ∼Rν∼ so it is enough to prove that S is a bisimulation. Suppose P ∼
(νã)P1 Rν (νã)Q1 ∼ Q with P1 R Q1. We start from a transition P

µ−→ P ′,

we use the bisimulation game on ∼ and Lemma 16 to deduce (νã)P1
µ−→ (νã)P ′1

with P1
µ−→ P ′1 and (P ′ | A) ∼ ((νã)P ′1 | A) with A = ϕ if µ = [ϕ]τ or

A = 0 otherwise. Using the bisimulation up-to on R we obtain Q1
µ−→ Q′1 with

(P ′1 | A) ∼ (νc̃)P2 Rν (νc̃)Q2 ∼ (Q′1 | A) for some P2 R Q2. We also get

(νã)Q1
µ−→ (νã)Q′1 from which using the game on the second ∼, Q

µ−→ Q′ with
((νã)Q′1 | A) ∼ (Q′ | A).

We now compose what we have: (P ′ | A) ∼ ((νã)P ′1 | A) and (P ′1 | A) ∼
((νc̃)P2). We can get from the latter ((νã)P ′1 | A) ∼ ((νãc)P2) using Lemmas 18
and 21, and then compose them using transitivity of ∼; similarly for Q: (Q′ |
A) ∼ ((νãc)Q2). Since P2 R Q2, the pair of P ′ | A and Q′ | A is in S. �

Definition 10 (Bisimulation up to ∼ and σ). A relation R is a bisimula-
tion up to bisimilarity and injective substitution if it validates the clauses of the
usual bisimulation, except that the outcomes of the transitions, P1 and Q1, are
requested to satisfy P1 ∼ P2σ and Q1 ∼ Q2σ with P2 R Q2, where σ stands for
an injective name substitution.

16

Proof. We prove that∼Rσ∼ is a bisimulation whereRσ stands for {(Pσ,Qσ) |
P R Q and σ is injective}. �

Lemma 23 is the most complex case in the proof of congruence of ∼, for
which Lemmas 9 and 23 are needed.

Lemma 23. P ∼ Q implies P | R ∼ Q | R for all R.

Proof. We prove {(P |R,Q |R) | P ∼ Q} is a bisimulation up to restriction
and bisimilarity, and (thanks to Lemmas 7 and 15) we only focus on transition

P | R [ϕ]τ−−→ P1. Lemma 15 gives ϕ1 such that [ϕ]τ vP |R [ϕ1]τ and [ϕ1]τ−−−→ can be
derived from transitions of P and/or R, separately.

From that, getting a similar Q | R [ϕ]τ−−→ Q1 is easy, but one must relate
P1 | ϕ and Q1 | ϕ in R using three different assumptions:

1. R
[ϕ1]τ−−−→ R′. Then P | R′ | ϕ ∼R∼ Q | R′ | ϕ (using “up to ∼”).

2. P
[ϕ1]τ−−−→ P ′. Then P ′ | ϕ1 ∼ Q′ | ϕ1, which implies P ′ | R | ϕ ∼R∼ Q′ |

R | ϕ. Indeed ϕ1 is absorbed by ϕ since P | Q | ϕB ϕ1 (“up to ∼”).

3. P and R synchronised into (νx)(P ′ | R′). Then P ′ ∼ Q′ and we can relate
(νx)(P ′ | R′) | ϕ to (νx)(Q′ | R′) | ϕ (“up to ∼ and ν”). �

Proposition 1 (Congruence of ∼). Bisimilarity is a congruence.

Proof. Restriction and parallel composition are handled by Lemmas 21 and 23,
so we focus on prefixing and sum. Suppose P ∼ Q, we want to prove π.P ∼ π.Q
(π.P +S ∼ π.Q+S follows easily). We show {(π.P, π.Q)}∪∼ is a bisimulation.

If π = α(x) and π.P
β(y)−−−→ (νx)(y/x | P) then π.Q

β(y)−−−→ (νx)(y/x | Q) and
(νx)(y/x | P) ∼ (νx)(y/x | Q) by Lemmas 21 and 23. (Similarly for π = α(x).)

If π = [ϕ]τ and π.P
[ϕ1]τ−−−→ P then π.Q

[ϕ1]τ−−−→ Q and we need to prove
P | ϕ ∼ Q | ϕ which holds by Lemma 23. �

The following lemma is useful for the proof of completeness of ∼ w.r.t. '.

Lemma 24. For any P , Q and ϕ, P
[ϕ]τ−−→ Q iff P | ϕ τ−→ Q | ϕ.

Proof. If P
[ϕ]τ−−→ P ′, then P | ϕ [ϕ]τ−−→ P ′ | ϕ and P | ϕ τ−→ P ′ | ϕ by Lemma 15,

since τ vϕ [ϕ]τ and P | ϕB ϕ.

From P | ϕ τ−→ P ′ | ϕ Lemma 15 provides a condition ζ such that P
[ζ]τ−−→ P ′ and

τ vP |ϕ [ζ]τ , which implies in turn P | ϕBζ. We prove by induction on P | ϕBζ
that [ϕ]τ vP [ζ]τ (see proof script in [18]) and conclude with Lemma 15. �

The following “Harmony lemma” relates reduction and
τ−→ transitions.

Lemma 25. If P 7→ P ′ then P
τ−→∼ P ′, and if P

τ−→ P ′ then P 7→∼ P ′.

Proof. Follows from Lemma 17 (7→ produces an arc a/b when
τ−→ produces the

bisimilar process (νx)(a/x | x/b)). �

17

Theorem 1 (Characterisation). P ' Q iff P ∼ Q.

Proof. The proof follows a standard pattern. Soundness is a consequence of
congruence (Proposition 1), Lemma 25, and the correspondence of barbs with
visible transitions (which follows from Lemma 17).

For completeness, we have to show that contexts can express the conditions
in the three clauses in Definition 6. We define accordingly tester processes.
The first clause is handled using process [ϕ]τ.w. For visible transitions (second
clause), the counterpart of, e.g., {a}(x)−−−→, is given by tester process a(y).(z/y | w |
w). We use ϕ for the third clause (by Lemma 24). �

As mentioned above, the calculus in [13] is a version of πP with prefixes for
free input and output, and without the corresponding bound prefixes (as well as
without sum and conditional τ). We call that calculus πP1, and write 'πP1 for
barbed congruence in πP1. The encoding [·]f, which we introduced in Remark 1,
allows us to embed πP1 into πP in a faithful way:

Proposition 2 (Correspondence with [13]). P 'πP1 Q iff [P]f ' [Q]f.

Proof. [P]f ' [Q]f ⇒ P 'πP1 Q follows from the fact that [·]f induces standard
correspondences of reductions, barbs, and contexts, from πP1 to πP:

• if P 7→πP1 P
′ then [P]f 7→' [P ′]f,

• if [P]f 7→ P1 then P1 ' [P ′]f and P 7→πP1 P
′ for some P ′,

• P ↓πP1a iff [P]f ↓a

• if C is a πP1 context, for some πP context D, for all P , [C[P]]f = D[[P]f].

Consider now πP′, the subcalculus of πP with neither sums nor [ϕ]τ constructs,
and '′, the barbed congruence induced by πP′ contexts. The proof of complete-
ness of ∼ only uses πP′ contexts, hence '′ = ∼ = '.

We prove the above correspondences between πP′ and πP1 for the encod-
ing [P]bp , [[P]p]

b
where [·]b is the standard encoding of bound prefixes using

free prefixes (homomorphic except [a(x).P]
b , (νx)ax. [P]

b
and [a(x).P]

b ,
(νx)ax. [P]

b
). This implies that [P]bp 'πP1 [Q]bp ⇒ P '′ Q for πP′ processes.

Remarking that [·]f : πP1 → πP′, we compose the encodings and we prove
P 'πP1 [[P]f]

b
p by induction on P using the following πP1 laws [13, Lemma 17]:

ab.P 'πP1 (νx)ax.(b/x | P) ab.P 'πP1 (νx)ax.(x/b | P) .

Finally, if P 'πP1 Q, then [[P]f]
b
p 'πP1 [[Q]f]

b
p, and thus [P]f ' [Q]f. �

3.4. Labelled Transitions for Free Prefixes

We now consider πPF, the variant of πP where only the grammar for prefixes
is changed, as follows (πPF is along the lines of πP1 in Proposition 2), but also
has sums and conditional τ): π ::= αb

∣∣ αb ∣∣ [ϕ]τ .

18

We adapt the LTS of Section 3.1 to πPF. The only modification we need to
make is to replace the rules for bound prefixes by the following:

→-f-in
x /∈ n(α) ∪ {b} ∪ fn(P)

αb.P
α(x)−−−→ x/b | P

→-f-out
x /∈ n(α) ∪ {b} ∪ fn(P)

αb.P
α(x)−−−→ b/x | P

The calculi πPF and πP are similar, and can be encoded into each other. The
domain of [·]f can be trivially extended to πPF (extended names are handled like

regular ones, e.g. [αb.P]f , α(x).(x/b | [P]f)). In the other direction, we need to
extend [·]b to πP, with some care to handle binders in sums:

[
Σiπi.Pi

]b
, (νx)Σi

 αx.Pi if πi = α(x)
αx.Pi if πi = α(x)
[ϕ]τ.Pi if πi = [ϕ]τ

,

where x is chosen fresh in the last clause. Note that we rely on α-conversion to
have the same name x bound in all summands in the encoding of sums.

We can show that both encodings preserve transitions and bisimilarity, so,
as in Proposition 2, they preserve barbed congruence.

4. Axiomatisation

4.1. Equational Laws for Strong Bisimilarity

4.1.1. Notations and Terminology.

We use A to range over processes that consist of compositions of ϕ processes,
which we call preorder processes. We often view such processes as multisets of
conditions. We use notation A,P to denote a process that can be written, using
the monoid laws for parallel composition, as A | P , where P does not contain
toplevel arcs. (Note that A might contain restrictions, corresponding to the
definition of join processes given in (1), towards the end of Section 2.1.) For
example, a | b g c | d.e | f ≺ g can be written (b g c | f ≺ g), (a | d.e) but there
is no A,P notation for (νa)(b g c | d.e).

We write ` P = Q whenever P and Q can be related by equational reasoning
using the laws of Table 2.

Note that we omit the standard equations expressing that | and + obey the
laws of commutative monoids, and that + is idempotent. We also omit the
laws for equational reasoning (equivalence (reflexivity, symmetry, transivity)
and substitutivity (axioms can be applied within contexts)). We will reason up
to these laws in the remainder.

4.1.2. Comments on the laws.

Before presenting the properties of the axiomatisation, we comment on the
laws of our axiomatisation and illustrate them on some examples.

As usual, the expansion law allows us to rewrite the parallel composition of
two sums into one, the third summand describing synchronisation in πP.

19

Expansion law (we can suppose x 6= y, bn(πi) /∈ fn(T), bn(ρj) /∈ fn(S).)

Σiπi.Pi︸ ︷︷ ︸
S

|Σjρj .Rj︸ ︷︷ ︸
T

= Σiπi.(Pi | T) + Σjρj .(S | Rj) when α g β is defined
+ Σi,j [αgβ]τ.(νxy)(x/y | Pi | Rj) and {πi,ρj}={α(x),β(y)}

Laws for preorder processes

L1 a ≺ b | b ≺ c = a ≺ b | b ≺ c | a ≺ c L2 a ≺ b | c ≺ b = a ≺ b | c ≺ b | a g c
L3 a ≺ b | b g c = a ≺ b | b g c | a g c L4 a ≺ a = 0

Laws for prefixes (the counterparts of laws L11-L12 for output are omitted)

L5 ϕ, S + π.P = ϕ, S + π.(ϕ | P) L6 [ϕ]τ.P = [ϕ]τ.(ϕ | P)

L7 [a ≺ a]τ.P = [b g b]τ.P
L8 [a g b]τ.P = [a g b]τ.P + [a ≺ b]τ.P
L9 [a g b]τ.P = [a g b]τ.P + [b g a]τ.P

L10 a(x).P = a(x).P + {a}(x).P
L11 b/a, S + a(x).P = b/a, S + a(x).P + b(x).P

L12 a/b, S + {a}(x).P = a/b, S + {a}(x).P + {b}(x).P

L13 b/a, S + [a ≺ c]τ.P = b/a, S + [a ≺ c]τ.P + [b ≺ c]τ.P
L14 a/b, S + [c ≺ a]τ.P = a/b, S + [c ≺ a]τ.P + [c ≺ b]τ.P
L15 b/a, S + [a g c]τ.P = b/a, S + [a g c]τ.P + [b g c]τ.P
L16 b/a, S + [a g c]τ.P = b/a, S + [a g c]τ.P + [c ≺ b]τ.P
L17 α(y).P = α(x).(νy)(x/y | P) if x /∈ fn(P)

L18 α(y).P = α(x).(νy)(y/x | P) if x /∈ fn(P)

Laws for restriction (the counterparts of laws L25 and L26 for output are
omitted; a ≺ b ∈ A6= stands for a ≺ b ∈ A and a 6= b, and similarly for a g b.)

L19 (νb)P = (νa)(P{a/b}) if a /∈ fn(P) L20 (νc)(νd)P = (νd)(νc)P

L21 P | (νa)Q = (νa)(P | Q) if a /∈ fn(P) L22 (νa)0 = 0

L23 (νa)A = {b ≺ c | b ≺ a, a ≺ c ∈ A6=}] {b g c | b ≺ a, c ≺ a ∈ A6=}
] {b g c | a g c, b ≺ a ∈ A6=}] {ϕ ∈ A | a /∈ n(ϕ)}

L24 (νa)(A, S+π.P) = (νa)
(
A, S + π.(νa)(A | P)

)
a /∈ n(π)

L25 (νa)(A, S+ a(x).P) = (νa)
(
A, S +Σa≺b∈A6=b(x).(νa)(A | P)

+Σb≺a∈A6=
∨agb∈A6=

{b}(x).(νa)(A | P)
)

L26 (νa)(A, S+ {a}(x).P) = (νa)
(
A, S +Σb≺a∈A6={b}(x).(νa)(A | P)

)
L27 (νa)(A, S+ [a ≺ c]τ.P) = (νa)

(
A, S +Σa≺b∈A6=[b ≺ c]τ.(νa)(A | P)

)
L28 (νa)(A, S+ [c ≺ a]τ.P) = (νa)

(
A, S +Σb≺a∈A6=[c ≺ b]τ.(νa)(A | P)

)
L29 (νa)(A, S+ [a g c]τ.P) = (νa)

(
A, S +Σa≺b∈A6=[b g c]τ.(νa)(A | P)

(a 6= c in L27-L29)
+Σb≺a∈A6=
∨agb∈A6=

[c ≺ b]τ.(νa)(A | P)
)

Table 2: An axiomatisation of ∼

20

Preorders. Laws L1-L4 express basic properties of relations ≺ and g, and ac-
tually provide an axiomatisation of ∼ for preorder processes.

Prefixes. Law L5 propagates ϕs in depth, expressing the persistence of condition
processes (ϕ). Law L6 is the counterpart of the third clause of Definition 6, and
describes the outcome of a [ϕ]τ transition. Similarly, laws L17-L18 correspond
to the firing of visible transitions in the LTS (regarding these rules, see also the
comments after Proposition 4).

We note that α-conversion for input prefixes follows from laws L17-L19, by
deriving the following equalities (and similarly for the other visible prefixes):

a(y).P
L17
= a(x).(νy)(x/y | P)

L19
= a(x).(νy′)(x/y′ | P{y′/y}) L17= a(y′).P{y′/y} .

Laws L11-L16 can be used to expand process behaviours using the preorder:
arcs can modify the subject of visible prefixes (L11-L12) and the condition in
[ϕ]τ prefixes (L13-L16). Laws L8, L9 and L13-L16 rely on the defining properties
of relations ≺ and g. Finally, law L7 is used to equate all reflexive τ prefixes.

Restriction. Laws L19-L22 are standard. The other laws are used to “push”
restrictions inside processes. Due to the necessity to handle the preorder com-
ponent (A), they are rather complex.

Law L23 is used to eliminate a restriction on a name a in a preorder process,
by propagating the information expressed by all ϕs that mention a.

Law L24 is rather self-explanatory, and shows how the A component prevents
us from simply pushing the restriction downwards (under prefixes).

Laws L25-L29 describe a kind of “synchronous application” of the prefix
laws seen above. For instance, the two summands in law L25 correspond to
applications of laws L11-L12: as we push the restriction on a downwards, we
make sure that all possible applications of these laws are taken into account.

Intuitively, L23 is used after laws L24-L29 have been used to erase all prefixes
mentioning the restricted name a, pushing the restriction on a inwards.

All in all, the set of laws in Table 2 is rather lengthy. We make two comments
on this. First, it can be remarked that axiomatisations often treat restriction
separately, by first focusing on a restriction-free calculus. In πP, because of pre-
order processes, we cannot in general push restrictions on top of sum processes,
so the situation is more complex (see also the discussion about [17] in Section 5).

Second, we could have presented the laws in a more compact way, by writing
schemas. A uniform presentation for laws L7-L16 and L25-L29 is as follows:

η vA µ µ.P ∈S
A, S = A,S + η.P

a∈ fn(µ) ∀η vA µ a∈ fn(η) ∨ ∃ρ η vA ρ ∧ ρ.P ∈S
(νa)(A,µ.P + S) = (νa)(A,S)

(3)

(To remove µ.P from µ.P +S, the second rule requires that some ρ.P are in S.
The second rule can be used to add those summands to S.) We prefer however
to write all rules explicitly, since this is how they are handled in proofs.

21

4.1.3. Examples of derivable equalities.

In the following examples, we sometimes switch silently to notation A,P to
ease readability. We also allow ourselves to simplify some reasonings involving
prefixes where the object is not important. We explain how the following equal-
ities between πP processes can be derived:

(νa)(b/a | a/c) = b/c (νa)(S+a(x).P) = (νa)S

(νa)(a/b | a(x).P) = {b}(x).(νa)P a(x).x = a(x).{x} a(x).{x} = a(x).0

The first equality above is established using law L23: before getting rid of the
restriction on a, we compute all conditions not involving a that can be deduced
from b/a | a/c. In this case, this is only b/c.

The second equality is a direct consequence of law L25.
Law L25 is also used for the third equality: only the second summand in the

law is not empty, which gives (νa)(a/b, a(x).P) = (νa)(a/b, {b}(x).(νa)P). Then,
L21 allows us to restrict the scope of νa, and we can get rid of (νa)a/b using
law 23, which yields the result.

Another way to see the third equality is to observe that we can derive
a/b, a(x).P = a/b, a(x).P + {a}(x).P + {b}(x).P using laws L10 and L12. In the
latter process, the sum is intuitively expanded, in the sense that all derivable
toplevel summands have been made explicit. When considering the restricted
version of both processes, it is sound to push the restriction on a downwards in
the expanded process, to obtain the expected equality. In this sense, law L25
implements a “synchronous version” of this reasoning, so as to ensure that when
pushing a restriction downwards, the behaviour of the process is fully expanded.

The next two equalities illustrate the meaning of protected names. We reason

as follows: a(x).x
L18
= a(x′).(νx)(x′/x, x)

L25
= a(x′).(νx)(x′/x, {x′}.(νx)0). We

then obtain the expected equality by getting rid of (νx)0 and (νx)x′/x, using
laws L21-L23. The reason why this equality holds is that fresh name x is emitted
without the context having the ability to interact at x, since x will never be
below another name in an arc. Therefore, the input at x is equivalent to a
protected input.

In the last equality, because of the transition a(x).{x} a(x
′)−−−→(νx)(x′/x | {x}),

x will never be above another name, so that the prefix {x} cannot be triggered,
and is equivalent to 0. This equality is derived as follows:

a(x).{x}
L17
= a(x′).(νx)(x′/x | {x}) L26= a(x′).(νx)x′/x

L23
= a(x′).0 .

(we have explained above how a(x′).0 = a(x).0 can be derived).

We leave it to the reader to check that the law for interleaving, presented
in Section 1, can be derived using the expansion law, followed by the rules for
prefixes and restriction to get rid of the summand [x g y]τ.(νt, u)(t/u).

4.2. Soundness and Completeness of the Axioms

Lemma 26 (Soundness). The laws of Table 2 relate bisimilar processes.

Proof (Sketch). Laws L7-L16 add smaller summands in the sense of vA
(they are instances of the first rule of (3) in Section 4.1.2), which hence yield

22

transitions that can be performed by the left-hand side by Lemma 15 and transi-
tivity of vA. When no new summand can be created, we say the sum is complete.
In laws L24-L29 we assume that sums are complete, which means that:

1. if A,S can do a transition µ, then so can π.P with π.P ∈ S,

2. all the new summands of the form ρ.(νa)(A | P) are such that ρ.P ∈ S.

Using (1) we can ignore the extra summand on the left-hand sides, and using (2)
we can ignore the extra sum on the right-hand sides (ρ.P ∈ S and ρ.(νa)(A | P)
have transitions to (νx)(B | P) and resp. (νx)(B | (νa)(A | P)), for some arc
B, which are bisimilar within context (νa)(A | −)). The other laws are easy. �

4.2.1. Auxiliary Results: Preorder Processes, Prefixes, Restriction.

Before establishing completeness, we first need technical results, given by Propo-
sitions 3, 4 and 5. First, laws L1-L4 can be used to saturate preorder processes:

Proposition 3. If A1, S1 ∼ A2, S2, then there exists A? such that ` Ai, Si =
A?, Si (i = 1, 2), and A? =

∏
{ϕ | ϕ not reflexive and A1 B ϕ}.

(Note that we could have picked A2 instead of A1 above.)

Proof. We rely on a rewriting relation on preorder processes. We write A
g7→ A′

whenever A′ is obtained from A using one of the laws L1-L4, oriented from left
to right, as a rewrite rule modulo associativity and commutativity of parallel
composition. We furthermore impose that no reflexive condition is added in a
rewrite step, nor a condition that is already contained in the preorder process.

We then prove the following three properties about
g7→:

1. If A
g7→ A′, then A ∼ A′: this is a consequence of Lemma 26 (or, al-

ternatively, follows from Lemma 20). This is useful to be able to relate
g7→-normal forms through ∼ and hence say they entail the same conditions.

2. For any (finite) A, there is no infinite
g7→-chain emanating from A.

Indeed, the rules defining
g7→ do not introduce any new name. Moreover, a

new arc or join can only be added if it is not already present. Since there

are finitely many conditions built on a finite set of names,
g7→ terminates.

3. Suppose A is a
g7→-normal form. Then, for any non-reflexive ϕ, if A B ϕ,

then ϕ appears in A (which we write ϕ ∈ A). This follows by induction on
the derivation of A B ϕ. The only interesting case is for the B-combine
rule, i.e. we know that A B Γ and Γ ` ϕ. We conclude by associating to
rules `-trans, `-join and `-extjoin laws L1, L2 and L3 respectively.

The observations above entail the expected property. �

We say that A is a saturated preorder process whenever A? ≡ A. We use A?

to range over such processes. We can remark that even if A contains only arcs,
A? may contain restrictions, because of induced conditions involving g.

The next lemma relates transitions of sums and the laws for prefixes.

23

Lemma 27. If A,S
µ−→ A,P then ` A,S = A,S + π.Q for some π and Q such

that µ and π only differ in their bound names and π.Q
µ−→ P .

Proof. Suppose S is of the form S1 +π′.Q and that the transition A,S
µ−→A,P

is in fact (Lemma 15) coming from the summand π′.Q
µ′−→P , with µ vA,S µ

′ and
µ′ =α π

′. Since Φ(A,S) = Φ(A) we know also that µ vA µ
′.

Then we have directly π vA π′. We prove by induction on π vA π′ that for
all S, ` A,S + π′.Q = A,S + π′.Q+ π.Q.

Reflexivity of v is handled by the fact that + is idempotent.
Transitivity (π3 vA π2 vA π1) is handled by monoid laws for +. We write

Qi for πi.Q below. We know by induction (1) and (2), from which follows (3):
(1) ` A,S +Q1 = A,S +Q1 +Q2 (for all S)
(2) ` A,S +Q2 = A,S +Q2 +Q3 (for all S)
(3) ` A,S +Q1 = A,S +Q1 +Q2 = A, (S +Q1) +Q2 +Q3 = A,S +Q1 +Q3

Base case. We now decompose vϕ when A B ϕ. We know there are some
ϕ1, . . . , ϕn ∈ A and a reflexive ψ such that vϕ = vψvϕ1 . . . vϕn so in fact we
only need to prove the result when ϕ ∈ A or when ϕ is reflexive:

• ϕ is reflexive: α(x) va≺a α(x) follows from idempotence of +, {a}(x) vaga

a(x) is law L10 and [ϕ1]τ vϕ [ϕ2]τ is either L8 or idempotence of +.

• ϕ ∈ A and α(x) vβ≺α β(x): this yields several cases:

– a(x) vb≺a b(x): law L11

– {a}(x) va≺b {b}(x): law L12

– {a}(x) vagb b(x): decompose a g b back into u/a | u/b (law L23) then
from b(x) get u(x) by L11, then {u}(x) (L10) and then {a}(x) (L12).

• ϕ ∈ A and [ϕ1]τ vϕ [ϕ2]τ when ϕ1, ϕ ` ϕ2: this yields several cases again,
we can decompose ` into usages of
, reasoning up to transitivity. (We
use instances of laws L16, L9, L15, L13.)

Laws L8-L16 can be used to “saturate” the topmost prefixes in sums. We
express this using the equivalence below, and rely on Lemma 27 to prove Prop. 4:

Definition 11 (Head sum normal form, �h). Given two sum processes S
and T , we write S ≺h T whenever for any summand π.P of S, there exists a
summand π.Q of T with π.P ∼ π.Q. We let S �h T stand for S ≺h T ∧ T ≺h S.

Proposition 4. Whenever A?, S1 ∼ A?, S2, where S1, S2 are two sum pro-
cesses, there are S′1, S

′
2 s.t. ` A?, Si = A?, S′i (for i = 1, 2) and S′1 �h S′2.

Proof. We first use law L5 to replicate A? under all prefixes in S1 and S2,
which is useful later in the proof. We therefore suppose that for any summand
π.P of S1 or S2, P = A? | P0 for some P0.

We prove the following property:

A?, S1 ∼ A?, S2

π.P ∈ S1
⇒ ∃Q ` A?, S2 = A?, S2 + π.Q

π.P ∼ π.Q (4)

24

by running the bisimulation game with a label µ such that π and µ differ only on

their object (that should be fresh in µ): π.P
µ−→ P ′, yielding A?, S1

µ−→ A? | P ′;
the game returns a transition A?, S2

µ−→ A? | Q′. Using Lemma 27 we get Q

such that A?, S2 = A?, S2 + π.Q and π.Q
µ−→ Q′. We now have to prove that

π.P ∼ π.Q. There are two cases:

1. if µ is a visible action, then, by definition of ∼, we have A? | P ′ ∼ A? | Q′.
We can now observe that P ′ ∼ A? | P ′ and Q′ ∼ A? | Q′, because A?

has been replicated under prefixes. We thus deduce P ′ ∼ Q′, which, by
congruence, gives µ.P ′ ∼ µ.Q′. Using the appropriate law among L17-18,
we deduce π.P ∼ µ.P ′ and π.Q ∼ µ.Q′, which implies π.P ∼ π.Q.

2. if µ = [ϕ]τ then π = µ and P ′ = P , Q′ = Q. The bisimulation game
yields ϕ | A? | P ′ ∼ ϕ | A? | Q′ and by the same reasoning as before,
ϕ | P ′ ∼ ϕ | Q′. By congruence [ϕ]τ.(ϕ | P ′) ∼ [ϕ]τ.(ϕ | Q′), and by L6,
[ϕ]τ.P ′ ∼ [ϕ]τ.Q′ i.e. π.P ∼ π.Q.

We have now (4). Equation (4) implies that ` A?, S2 = A?, S2 + T2 with
S1 ≺h S2 + T2 and T2 ≺h S1.

By reasoning symmetrically about S2+T2, we obtain T1 such that ` A?, S1 =
A?, S1 + T1 with S2 + T2 ≺h S1 + T1 and T1 ≺h S2 + T2. Since we also have
S1 ≺h S2 + T2, we can conclude S1 + T1 ≺h S2 + T2 and thus S′1 �h S′2 with
` S′i = Si + Ti. �

Remark 3 (On the definition of �h). In the definition of ≺h, we impose
π.P ∼ π.Q, and not simply P ∼ Q. The equivalence induced by the choice of
the latter condition would indeed be too discriminating. To see why, consider
Q1 = a(x).c/x and Q2 = a(x).0. Obviously, c/x 6∼ 0. On the other hand, we have
Q1 ∼ Q2: after a a(y)−−−→ transition on both sides, we must compare (νx)(c/x | y/x)
and (νx)(y/x), and both are bisimilar to 0. In order to derive ` Q1 = Q2,
we rely on the following property, which explains the shape of laws L17, L18:
a(y).P ∼ a(y).Q iff (νy)(x/y | P) ∼ (νy)(x/y | Q).

Proposition 5 expresses that restrictions can be pushed inwards in processes.
It refers to the following notion of measure on processes (which is useful to reason
by induction on processes in the completeness proof):

Definition 12 (Measure on processes). Given a πP process P , we define
|P | as the maximum number of prefixes in summands of P , i.e., |Σiπi.Pi| =
maxi (1 + |Pi|) (hence |0| = 0), |(νa)P | = |P |, |P | Q| = |P |+ |Q|, and |a/b| = 0.

Proposition 5. For any A,S, a, there exist A′ and S′ such that ` (νa)(A,S) =
A′, S′ and |(νa)(A,S)| ≥ |A′, S′|.

Proof. Using name extrusion, we pull all toplevel restrictions of A,S in order
to derive ` A,S = (νã)(A0, S0), for some A0, S0 without toplevel restriction.

We then reason by induction over the number of names in ã. We apply
laws L25-L29 from left to right, until name a does not appear free in any topmost

25

prefix of the sum. At that point, since the restriction on a has been pushed under
prefixes, a has no free occurrence in the sum. We can thus use name intrusion,
so that law L23 can be applied to get rid of the restriction on a on the preorder
part of the process.

This operation is iterated until restrictions are pushed under all prefixes,
and law L22 can be used to get rid of the restriction. �

4.2.2. Establishing Completeness.

The grammar P ::= A,Σiπi.Pi
∣∣ (νa)P defines what we call |-free processes:

only arcs are composed, and the non-preorder part of processes is a sum.

Proposition 6 (Characterisation, without parallel composition).
For all |-free processes P and Q, P ∼ Q iff ` P = Q.

Proof. The ‘if’ part follows from Lemma 26 and congruence of ∼.

Suppose now P ∼ Q. We reason by induction on |P |+ |Q|.
By Proposition 5, there are sum-only processes P0, Q0 with no toplevel re-

striction such that ` P = P0 and ` Q = Q0.
We then reason up to associativity and commutativity of parallel composi-

tion to write ` P0 = A1, S1 and ` Q0 = A2, S2. We have A1, S1 ∼ A2, S2, which
gives, by Proposition 3, ` Ai, Si = A?, Si for i = 1, 2, for some A?.

We can then apply Proposition 4 to deduce ` A?, Si = A?, S′i, for i = 1, 2,
for some S′1, S

′
2 s.t. S′1 �h S′2.

To sum up, we have proved until now ` P = A?, S′1, ` Q = A?, S′2, and
S′1 �h S′2.

We now prove, by induction over the number of summands in S′1, that for any
such summand π.T1, there is a summand π.T2 in S′2 s.t. ` π.T1 = π.T2. Once
this will be proved, we shall establish the same way the symmetrical property,
which will allow us to deduce ` S′1 = S′2.

Suppose then π.T1 is a summand of S′1.
We reason by case analysis on the shape of π, and suppose π = a(x). We

know, since S′1 �h S′2, that there is a summand a(x).T2 of S′2 such that a(x).T1 ∼
a(x).T2. We have ` a(x).Ti = a(y).(νx)(y/x | Ti), for i = 1, 2, by law L17,
induction hypothesis (on (νx)(y/x | T1) ∼ (νx)(y/x | T2)) and congruence using
the context a(y).[·].

Moreover, since a(x).T1 ∼ a(x).T2, we know, by unfolding bisimilarity with
the transition labelled by a(y), that (νx)(y/x | T1) ∼ (νx)(y/x | T2). This allows
us to rely on the induction hypothesis to show ` (νx)(y/x | T1) = (νx)(y/x |
T2) and hence ` a(y).(νx)(y/x | T1) = a(y).(νx)(y/x | T2) which gives us, as
announced, ` π.T1 = π.T2.

The other cases for the shape of π are treated similarly. �

We now move to the full calculus, by taking into account parallel composi-
tion. As is usually the case, this relies on a law for expansion.

The expansion law yields the following result, which then gives Theorem 2.

26

Lemma 28. For any P , there exists a |-free process Q s.t. ` P = Q.

Proof. First ` P = A,P1 using the monoid laws for parallel composition.
Then by induction on P1 we build S such that ` P1 = S and |P1| = |S|. There
are only two cases: sums, and parallel compositions of two sums (by induction
hypothesis), on which we apply the expansion law. Both preserve | · |. �

We can then extend Proposition 6 to the whole πP calculus:

Theorem 2 (Axiomatisation of ∼). For all P and Q, P ∼ Q iff ` P = Q.

Proof. The theorem follows from Proposition 6 and Lemma 28. �

Remark 4 (Normal forms). The proofs in this section suggest that we can
define a strategy to apply the laws of our axiomatisation, in order to rewrite a
πP process P to its normal form, nf(P), so that P ∼ Q iff nf(P) = nf(Q).

For preorder processes, the saturated form is a normal form for ∼: if A1 ∼
A2, then, by Proposition 3, ` A?1 = A?2. By contrast, the proof of Proposition 4
does not compute a canonical form for sum processes. For instance, from the
equivalence

b/a | c/a | a(x).0 ∼ b/a | c/a | a(x).0 + b(x).0 ,

Proposition 4 rewrites these processes into b/a | c/a | a(x).0+b(x).0, but not into
b/a | c/a | a(x).0 + b(x).0 + c(x).0, which could be seen as a normal form for ∼,
obtained by saturating the sum. Actually, the normal form could even be

b/a | c/a | a(x).0 + b(x).0 + c(x).0 + {a}(x).0 + {b}(x).0 + {c}(x).0 ,

by virtue of several applications of (the counterpart for output of) law L10 with
π1 an output prefix and π2 a protected output.

The full description of this normalisation procedure is left for future work.

4.3. Adapting our Axiomatisation to Explicit Fusions

We can reuse the ideas presented above to describe an axiomatisation for
barbed congruence in Explicit Fusions (EF, [12, 25]). Accordingly, we adopt a
presentation of the calculus that follows the lines of πP as we have introduced
it, by having primitive bound prefixes. EF feature fusion processes, of the form
a=b, which can equate names via ≡: we have a=b | P ≡ a=b | P{b/a}.

The grammar of prefixes, conditions and processes is as follows:

ϕ ::= a=b π ::= a(x) | a(x) | [a=b]τ P ::= P |Q | νaP | Σiπi.Pi | a=b

As in πP, we adopt primitive bound prefixes. Free prefixes can be encoded:
[ab.P] = (νu)a(u).(u=b | P). Note in passing that fusions can be represented in
πP, encoding a=b with a/b | b/a.

The following definition is adapted from the efficient bisimulation of [25].
The LTS is defined according to the approach in Table 1, except in their LTS
P τ−→P ′ does not necessarily imply that P

[a=b]τ−−−−→P ′ for every a and b. So we
have to change the third clause of the definition of bisimulation to take this
into account. The way we handle objects does not matter, as the resulting
bisimilarity is the same.

27

Definition 13 (∼EF). An efficient bisimulation is a symmetric relation R such
that if PRQ then:

1. P B a=b iff QB a=b;

2. P
µ−→ P ′ implies Q

µ−→ Q′ for some Q′ s.t. P ′RQ′, for µ 6= [a=b]τ ;

3. P
[a=b]τ−−−−→ P ′ implies a=b | Q τ−→ Q′ and a=b | P ′ R Q′.

We write ∼EF for the largest efficient bisimulation.

We write `EF P = Q if the equality can be derived using equational reason-
ing with the laws of Table 3 (we again omit the monoid laws for | and +).

The axiomatisation is considerably simpler than in πP. Local reasoning is
possible because the stateful component of processes encodes an equivalence
relation on names, while a form of global reasoning is necessary in the laws of
Table 2 for πP. The fact that fusions are symmetric yields Lemma 29:

Lemma 29. For any P, a, b, we can derive `EF P | a=b = P{a/b} | a=b.

This renders useless protected names and simplifies greatly the handling of
restriction: while the counterparts of Lemmas 26-28 and Propositions 3-6 hold,
their proofs are much shorter, e.g. Proposition 5 boils down to two cases:

• either ABa = b with b 6= a, in which case `EF (νa)(A,S) = A{b/a}, S{b/a},

• or there is no such b and `EF (νa)(A,S) = A, (νa)S,

which means there is no use for counterparts of laws L25-L29. We conclude:

Proposition 7. For any P,Q, we have P ∼EF Q iff `EF P = Q.

Restriction laws.

(νa)(P | Q) = P | (νa)Q and (νb)P = (νa)P{a/b} when a /∈ fn(P)

(νa)Σiπi.Pi = Σi|a/∈n(πi)πi.(νa)Pi

Laws for fusions.

a=a = 0 a=b | a=c = a=b | a=c | b=c a=b = b=a (νa)a=b = 0

Laws for prefixes.

a=b | S + π.P = a=b | S + π.(a=b | P) [a=b]τ.P = [a=b]τ.(a=b | P)

π.P + π.P = π.P [a=b]τ.P = [b=a]τ.P a=b | [a=c]τ.P = a=b | [b=c]τ.P

a=b | S + a(x).P = a=b | S + b(x).P a=b | S + a(x).P = a=b | S + b(x).P

Expansion law.

Σiπi.Pi |Σjρj .Rj = Σiπi.(Pi | T) + Σjρj .(S | Rj) + Σi,j [a=b]τ.(νx)(Pi | Rj)
where {πi, ρj} = {a(x), b(x)}

Table 3: Axiomatisation for the Explicit Fusions calculus

28

5. Conclusions and Future Work

Working with a preorder on names has an influence on the behavioural theory
of πP, notably through the interplay between arcs and restrictions. The preorder
relation is represented explicitly in πP processes, using arcs. We do not see any
natural “implicit version” of πP, mimicking the relation between Explicit Fusions
and Fusions, whereby the extension of the preorder along a communication
would not generate an arc process.

The stateful nature of the preorder component of πP processes can be related
to frames in the applied π-calculus [1] and Psi-calculi [2]. Arcs in πP can be
seen in some sense as substitutions, but they differ from the active substitutions
of applied π. The latter map variables to terms, while, in the tradition of fusion
calculi, we only have (channel) names in πP. Moreover, several arcs acting on the
same name are allowed in πP, while a substitution acts on at most one variable
in applied π. For these reasons, the behavioural theories of πP and applied π are
rather different. Liu and Lin’s proof system for applied π [17] departs from our
axiomatisation for πP, but has in common the stateful component of processes.

The behavioural theory of πP is based on an operational account. An in-
triguing question is the construction of a denotational model for πP, and the
comparison with known models for π and Fusions. Given the proximity of πP
to Explicit Fusions, one way to proceed could be to adapt the approach of [3].
We would also like to study the weak version of behavioural equivalence.

The results of this work provide foundations for the behavioural theory of
the πP calculus, which also has i/o-types (cf. [13]). As already mentioned,
typed behavioural equivalence [7, 21] can be used to establish fine behavioural
properties of concurrent systems. We would like to find out whether it can be
helpful to refine untyped analyses of systems where Fusions have been used.

Acknowledgements. We thank Davide Sangiorgi and Fu Yuxi for useful dis-
cussions about this work, as well as the anonymous referees for their helpful
remarks. This work has been supported by projects ANR 12IS02001 PACE,
ANR 2010-BLAN-0305 PiCoq and NSF of China (61261130589).

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. of POPL, pages 104–115. ACM, 2001.

[2] J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile pro-
cesses, nominal data, and logic. In LICS, page 39–48. IEEE, 2009.

[3] F. Bonchi, M. G. Buscemi, V. Ciancia, and F. Gadducci. A presheaf environment
for the explicit fusion calculus. J. Autom. Reasoning, 49(2):161–183, 2012.

[4] M. Boreale, M. G. Buscemi, and U. Montanari. D-fusion: A distinctive fusion
calculus. In Proc. APLAS, volume 3302 of LNCS, pages 296–310. Springer, 2004.

[5] M. Boreale, M. G. Buscemi, and U. Montanari. A general name binding mecha-
nism. In Proc. TGC, volume 3705 of LNCS, pages 61–74. Springer, 2005.

[6] S. Carpineti, C. Laneve, and L. Padovani. PiDuce - A project for experimenting
Web services technologies. Sci. Comput. Program., 74(10):777–811, 2009.

29

[7] Y. Deng and D. Sangiorgi. Towards an algebraic theory of typed mobile processes.
Theor. Comput. Sci., 350(2-3):188–212, 2006.

[8] The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

[9] T. Ehrhard and O. Laurent. Acyclic solos and differential interaction nets. Logical
Methods in Computer Science, 6(3), 2010.

[10] Y. Fu. The χ-calculus. In APDC, pages 74–81. IEEE Computer Society, 1997.

[11] P. Gardner, C. Laneve, and L. Wischik. The fusion machine. In CONCUR, volume
2421 of Lecture Notes in Computer Science, pages 418–433. Springer, 2002.

[12] P. Gardner and L. Wischik. Explicit fusions. In MFCS, volume 1893 of LNCS,
pages 373–382. Springer, 2000.

[13] D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi. Name-passing calculi: From fu-
sions to preorders and types. In LICS, pages 378–387. IEEE, 2013.

[14] D. Hirschkoff, J.-M. Madiot, and X. Xu. A behavioural theory of a π-calculus
with preorders (extended abstract). In Proc. of FSEN, LNCS. Springer, 2015.

[15] K. Honda and N. Yoshida. On reduction-based process semantics. Theor. Comp.
Sci., 152(2):437–486, 1995.

[16] C. Laneve and B. Victor. Solos in concert. Mathematical Structures in Computer
Science, 13(5):657–683, 2003.

[17] J. Liu and H. Lin. Proof system for applied pi calculus. In Proc. IFIP TCS, volume
323 of IFIP Advances in Inf. and Comm. Technol., pages 229–243. Springer, 2010.

[18] J.-M. Madiot. Coq proof scripts for some results of this paper, 2014. Available
at http://madiot.org/pip-relations.tar.gz.

[19] J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Inf.
Comput., 120(2):174–197, 1995.

[20] J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry in
mobile processes. In LICS, pages 176 –185. IEEE, 1998.

[21] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-
ematical Structures in Computer Science, 6(5):409–453, 1996.

[22] D. Sangiorgi. Pi-calculus, internal mobility, and agent-passing calculi. Theor.
Comput. Sci., 167(1&2):235–274, 1996.

[23] D. Sangiorgi and D. Walker. The Pi-Calculus: a theory of mobile processes.
Cambridge University Press, 2001.

[24] B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In Proc.
of ICALP, volume 1443, pages 455–469, 1998.

[25] L. Wischik and P. Gardner. Strong bisimulation for the explicit fusion calculus.
In Proc. of FoSSaCS, volume 2987 of LNCS, pages 484–498, 2004.

30

http://madiot.org/pip-relations.tar.gz

	Introduction
	P: Reduction-Based Semantics
	The Calculus: Preorders and Processes
	Reduction Semantics and Barbed Congruence

	A Labelled Transition System for P
	LTS and Bisimilarity
	Towards the Characterisation Theorem
	On the relation.
	On the relation.
	On the relation.

	The Characterisation Theorem
	Results about transitions.

	Labelled Transitions for Free Prefixes

	Axiomatisation
	Equational Laws for Strong Bisimilarity
	Notations and Terminology.
	Comments on the laws.
	Examples of derivable equalities.

	Soundness and Completeness of the Axioms
	Auxiliary Results: Preorder Processes, Prefixes, Restriction.
	Establishing Completeness.

	Adapting our Axiomatisation to Explicit Fusions

	Conclusions and Future Work

