Switch to a ML-style programming language Functions and Function calls Proving Termination More on Specification Languages and Application to Arrays

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

17 décembre 2019

Exercise 2

The following program is one of the original examples of Floyd

```
q \leftarrow 0; r \leftarrow x;
while r \ge y do
r \leftarrow r - y; q \leftarrow q + 1
```

(Why3 file to fill in: imp_euclide.mlw)

- ▶ Propose a formal precondition to express that x is assumed non-negative, y is assumed positive, and a formal post-condition expressing that q and r are respectively the quotient and the remainder of the Euclidean division of x by y
- ► Find appropriate loop invariants and prove the correctness of the program

Reminder of the last lecture

- Logics and automated prover capabilities
 - propositional logic
 - first-order logic
 - theories
 - equality
 - integer arithmetic
- classical Hoare logic
 - very simple programming language
 - deduction rules for triples {Pre}s{Post}
- weakest liberal pre-conditions
 - function WLP(s, Q) returning a logic formula
 - ▶ soundness: if $P \rightarrow \text{WLP}(s, Q)$ then triple $\{P\}s\{Q\}$ is valid

Exercise 3

Let's assume given in the underlying logic the functions div2(x) and mod2(x) which respectively return the division of x by 2 and its remainder. The following program is supposed to compute, in variable r, the power x^n .

```
r <- 1; p <- x; e <- n;
while e > 0 do
   if mod2(e) ≠ 0 then r <- r * p;
   p <- p * p;
   e <- div2(e);</pre>
```

(Why3 file to fill in: power_int.mlw)

- Assuming that the power function exists in the logic, specify appropriate pre- and post-conditions for this program
- Find an appropriate loop invariant, and prove the program

This Lecture's Goals

- Swich to a "modern" ML-style language
- Extend that language:
 - Labels for reasoning on the past
 - ► Local mutable variables
 - ► Sub-programs, function calls, modular reasoning
- ► Proving *Termination*
- ► (First-order) logic as a modeling language
 - Definitions of new types, product types
 - ▶ Definitions of functions, of predicates
 - Axiomatizations
 - ► Ghost code, ghost variables, ghost functions
 - ► Help provers using *lemma functions*
- Application:
 - ► a bit of higher-order logic
 - program on Arrays

Beyond IMP and classical Hoare Logic

Extended language

- more data types
- ► logic variables: local and immutable
- ► *labels* in specifications

Handle termination issues:

- prove properties on non-terminating programs
- prove termination when wanted

Prepare for adding later:

- run-time errors (how to prove their absence)
- local mutable variables, functions
- complex data types

Outline

"Modern" Approach, Blocking Semantics

A ML-like Programming Language Blocking Operational Semantics Weakest Preconditions Revisited

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Extended Syntax: Generalities

- ▶ We want a few basic data types : int, bool, real, unit
- No difference between expressions and statements anymore

Basically we consider

- ► A purely functional language (ML-like)
- ▶ with *global mutable variables*

very restricted notion of modification of program states

Base Data Types, Operators, Terms

- unit type: type unit, only one constant ()
- ► Booleans: type bool, constants *True*, *False*, operators and, or, not
- \blacktriangleright integers: type int, operators $+, -, \times$ (no division)
- reals: type real, operators $+, -, \times$ (no division)
- ► Comparisons of integers or reals, returning a boolean
- "if-expression": written if b then t_1 else t_2

```
t ::= val (values, i.e. constants)

| v (logic variables)

| x (program variables)

| t \ op \ t (binary operations)

| if t \ then \ t \ else \ t (if-expression)
```

Practical Notes

- ➤ Theorem provers (inc. Alt-Ergo, CVC4, Z3) typically support such a typed logic
- may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas when needed (e.g. transformation of if-expressions and/or let-expressions into equivalent formulas)

Local logic variables

We extend the syntax of terms by

```
t ::= let V = t in t
```

Example: approximated cosine

```
let cos_x =
   let y = x*x in
   1.0 - 0.5 * y + 0.04166666 * y * y
in
...
```

Syntax: Formulas

Unchanged w.r.t to previous syntax, but also addition of local binding:

Typing

► Types:

$$au$$
 ::= int | real | bool | unit

► Typing judgment:

$$\Gamma \vdash t : \tau$$

where Γ maps identifiers to types:

- ightharpoonup either $v : \tau$ (logic variable, immutable)
- either x: mut τ (program variable, mutable)

Important

- a mutable variable is not a value (it is not a "reference" value)
- ▶ as such, there is no "reference on a reference"
- ► no *aliasing*

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local (immutable) variables

- Σ: maps program variables to values (a map)
- ► П: maps logic variables to values (a stack)

Warning

Semantics is a partial function, it is not defined on ill-typed formulas

Typing rules

Constants:

$$\overline{\Gamma \vdash n : int}$$
 $\overline{\Gamma \vdash r : real}$

$$\Gamma \vdash True : bool$$
 $\Gamma \vdash False : bool$

Variables:

$$\frac{\mathbf{V}: \tau \in \Gamma}{\Gamma \vdash \mathbf{V}: \tau} \qquad \frac{\mathbf{X}: \mathsf{mut} \ \tau \in \Gamma}{\Gamma \vdash \mathbf{X}: \tau}$$

Let binding:

$$\frac{\Gamma \vdash t_1 : \tau_1 \qquad \{v : \tau_1\} \cdot \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash \text{let } v = t_1 \text{ in } t_2 : \tau_2}$$

- All terms have a base type (not a "reference")
- In practice: Why3, unlike OCaml, does not require to write !x for mutable variables

Type Soundness Property

Our logic language satisfies the following standard property of purely functional language

Theorem (Type soundness)

Every well-typed terms and well-typed formulas have a semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

- ► Former statements of IMP are now expressions of type unit Expressions may have Side Effects
- Statement skip is identified with ()
- ► The sequence is replaced by a local binding
- ► From now on, the condition of the if then else and the while do in programs is a Boolean expression

Toy Examples

```
z <- if x ≥ y then x else y
let v = r in (r <- v + 42; v)
while (x <- x - 1; x > 0) (* (--x > 0) in C *)
do ()
while (let v = x in x <- x - 1; v > 0) (* (x-- > 0) in C *)
do ()
```

Syntax

$$e ::= t$$
 (pure term)
 $| e \circ p e$ (binary operation)
 $| x <- e$ (assignment)
 $| \text{let } v = e \text{ in } e$ (local binding)
 $| \text{if } e \text{ then } e \text{ else } e$ (conditional)
 $| \text{while } e \text{ do } e$ (loop)

ightharpoonup sequence e_1 ; e_2 : syntactic sugar for

let
$$v = e_1$$
 in e_2

when e_1 has type unit and v not used in e_2

Typing Rules for Expressions

Assignment:

$$\frac{\mathbf{X} : \mathsf{mut} \ \tau \in \Gamma \qquad \Gamma \vdash \mathbf{e} : \tau}{\Gamma \vdash \mathbf{X} < \mathbf{e} : \mathsf{unit}}$$

Let binding:

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \{v : \tau_1\} \cdot \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } v = e_1 \text{ in } e_2 : \tau_2}$$

Conditional:

$$\frac{\Gamma \vdash c : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ c \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 : \tau}$$

Loop:

$$\frac{\Gamma \vdash c : bool \qquad \Gamma \vdash e : unit}{\Gamma \vdash while \ c \ do \ e : unit}$$

Operational Semantics

Novelty w.r.t. IMP

Need to precise the order of evaluation: left to right (e.g. x < 0; ((x < 1); 2) + x) = 2 or 3 ?)

one-step execution has the form

$$\Sigma$$
, Π , $e \rightsquigarrow \Sigma'$, Π' , e'

□ is the *stack of local variables*

values do not reduce

Operational Semantics, Continued

▶ Binary operations

$$\frac{\Sigma,\Pi,\textbf{\textit{e}}_1\leadsto\Sigma',\Pi',\textbf{\textit{e}}_1'}{\Sigma,\Pi,\textbf{\textit{e}}_1+\textbf{\textit{e}}_2\leadsto\Sigma',\Pi',\textbf{\textit{e}}_1'+\textbf{\textit{e}}_2}$$

$$\frac{\Sigma,\Pi,\textit{e}_{2}\leadsto\Sigma',\Pi',\textit{e}_{2}'}{\Sigma,\Pi,\textit{val}_{1}+\textit{e}_{2}\leadsto\Sigma',\Pi',\textit{val}_{1}+\textit{e}_{2}'}$$

$$\frac{\textit{val} = \textit{val}_1 + \textit{val}_2}{\Sigma, \Pi, \textit{val}_1 + \textit{val}_2 \leadsto \Sigma, \Pi, \textit{val}}$$

Operational Semantics

Assignment

$$\frac{\Sigma, \Pi, e \leadsto \Sigma', \Pi', e'}{\Sigma, \Pi, x \lessdot e \leadsto \Sigma', \Pi', x \lessdot e'}$$

$$\overline{\Sigma, \Pi, x \leftarrow val \rightsquigarrow \Sigma[x \leftarrow val], \Pi, ()}$$

Let binding

$$\frac{\Sigma,\Pi,\textbf{\textit{e}}_1\leadsto\Sigma',\Pi',\textbf{\textit{e}}_1'}{\Sigma,\Pi,\text{let }\textbf{\textit{v}}=\textbf{\textit{e}}_1\text{ in }\textbf{\textit{e}}_2\leadsto\Sigma',\Pi',\text{let }\textbf{\textit{v}}=\textbf{\textit{e}}_1'\text{ in }\textbf{\textit{e}}_2}$$

$$\Sigma, \Pi, \text{let } v = val \text{ in } e \rightsquigarrow \Sigma, \{v = val\} \cdot \Pi, e$$

Operational Semantics, Continued

Conditional

$$\frac{\Sigma,\Pi,\textit{C}\leadsto\Sigma',\Pi',\textit{C}'}{\Sigma,\Pi,\text{if \textit{C} then \textit{e}_1 else $\textit{e}_2\leadsto\Sigma',\Pi'$, if \textit{C}' then \textit{e}_1 else \textit{e}_2}$$

$$\overline{\Sigma,\Pi,\text{if \textit{True} then \textit{e}_1 else $\textit{e}_2\leadsto\Sigma,\Pi,\textit{e}_1$}}$$

$$\overline{\Sigma,\Pi,\text{if \textit{False} then \textit{e}_1 else $\textit{e}_2\leadsto\Sigma,\Pi,\textit{e}_2$}}$$

► Loop

$$\Sigma, \Pi, \text{ while } c \text{ do } e \rightsquigarrow \\ \Sigma, \Pi, \text{ if } c \text{ then } (e; \text{ while } c \text{ do } e) \text{ else } ()$$

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

An equivalent operational semantics can be defined using let v = ... in ... instead, e.g.:

$$\frac{\textit{v}_1, \textit{v}_2 \text{ fresh}}{\Sigma, \Pi, \textit{e}_1 + \textit{e}_2 \leadsto \Sigma, \Pi, \text{let } \textit{v}_1 = \textit{e}_1 \text{ in let } \textit{v}_2 = \textit{e}_2 \text{ in } \textit{v}_1 + \textit{v}_2}$$

► Thus, only the context rule for let is needed

Blocking Semantics: General Ideas

- ▶ add *assertions* in expressions
- ► failed assertions = "run-time errors"

First step: modify expression syntax with

- new expression: assertion
- adding loop invariant in loops

Type Soundness

Theorem

Every well-typed expression evaluate to a value or execute infinitely

Classical proof:

- type is preserved by reduction
- execution of well-typed expressions that are not values can progress

Toy Examples

Result value in post-conditions

New addition in the specification language:

- keyword result in post-conditions
- denotes the value of the expression executed

Example:

```
{ true } if x \ge y then x else y { result \ge x \land result \ge y }
```

Soundness of a program

Definition

Execution of an expression in a given state is *safe* if it does not block: either terminates on a value or runs infinitely.

Definition

A triple $\{P\}e\{Q\}$ is valid if for any state Σ, Π satisfying P, e executes safely in Σ, Π , and if it terminates, the final state satisfies Q

Blocking Semantics: Modified Rules

$$\frac{ \llbracket P \rrbracket_{\Sigma,\Pi} \text{ holds} }{ \Sigma,\Pi, \text{assert } P \leadsto \Sigma,\Pi, () }$$

$$[I]_{\Sigma,\Pi}$$
 holds

 Σ , Π , while c invariant I do $e \rightsquigarrow \Sigma$, Π , if c then (e; while c invariant I do e) else ()

Important

Execution blocks as soon as an invalid annotation is met

Weakest Preconditions Revisited

Goal:

ightharpoonup construct a new calculus WP(e, Q)

Expected property: in any state satisfying WP(e, Q),

- e is guaranteed to execute safely
- ▶ if it terminates, Q holds in the final state

New Weakest Precondition Calculus

Pure expressions (i.e. without side-effects, a.k.a. "terms")

$$WP(t, Q) = Q[result \leftarrow t]$$

'let' binding

$$\begin{aligned} \operatorname{WP}(\operatorname{let} x &= e_1 \text{ in } e_2, Q) &= \\ \operatorname{WP}(e_1, (\operatorname{WP}(e_2, Q)[x \leftarrow \mathit{result}])) \end{aligned}$$

Reminder: sequence is a particular case of 'let'

$$WP((e_1; e_2), Q) = WP(e_1, WP(e_2, Q))$$

WP: Exercise

WP(let
$$v = x$$
 in $(x < x + 1; v), x > result) = ?$

$$\begin{aligned} &\operatorname{WP}(\operatorname{let} \ v = x \ \operatorname{in} \ (x < x + 1; v), x > \operatorname{\textit{result}}) \\ &= \operatorname{WP}(x, (\operatorname{WP}((x < x + 1; v), x > \operatorname{\textit{result}}))(v \leftarrow \operatorname{\textit{result}})) \\ &= \operatorname{WP}(x, (\operatorname{WP}(x < x + 1, \operatorname{WP}(\underline{v}, x > \operatorname{\textit{result}})))(v \leftarrow \operatorname{\textit{result}})) \\ &= \operatorname{WP}(x, (\operatorname{WP}(\underline{x} < x + 1, x > v))(v \leftarrow \operatorname{\textit{result}})) \\ &= \operatorname{WP}(x, (x + 1 > v)(v \leftarrow \operatorname{\textit{result}})) \\ &= \operatorname{WP}(x, (x + 1 > \operatorname{\textit{result}})) \\ &= \operatorname{WP}(x, (x + 1 > \operatorname{\textit{result}})) \\ &= x + 1 > x \end{aligned}$$

Weakest Preconditions, continued

Assignment:

$$WP(x \leftarrow e, Q) = WP(e, Q[result \leftarrow (); x \leftarrow result])$$

Alternative:

$$WP(x < e, Q) = WP(let v = e in x < v, Q)$$

$$WP(x < t, Q) = Q[result \leftarrow (); x \leftarrow t]$$

Weakest Preconditions, continued

Conditional

$$\operatorname{WP}(\text{if } e_1 \text{ then } e_2 \text{ else } e_3, Q) = \\ \operatorname{WP}(e_1, \operatorname{if } \textit{result} \text{ then } \operatorname{WP}(e_2, Q) \text{ else } \operatorname{WP}(e_3, Q))$$

► Alternative with let: (exercise!)

Weakest Preconditions, continued

Assertion

$$WP(assert P, Q) = P \wedge Q$$
$$= P \wedge (P \rightarrow Q)$$

(second version useful in practice)

▶ While loop

```
egin{aligned} &\operatorname{WP}(\mathsf{while}\ c\ \mathsf{invariant}\ I\ \mathsf{do}\ e,Q) = &I \land &\\ &\forall \vec{v},(I \to \mathrm{WP}(c,\mathsf{if}\ \mathit{result}\ \mathsf{then}\ \mathrm{WP}(e,I)\ \mathsf{else}\ Q))[w_i \leftarrow v_i] \end{aligned}
```

where w_1, \ldots, w_k is the set of assigned variables in expressions c and e and v_1, \ldots, v_k are fresh logic variables

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions

Labels

Local Mutable Variables

Functions and Functions Calls

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Soundness of WP

Lemma (Preservation by Reduction)

```
If \Sigma, \Pi \models \mathrm{WP}(e, Q) and \Sigma, \Pi, e \leadsto \Sigma', \Pi', e' then \Sigma', \Pi' \models \mathrm{WP}(e', Q)
```

Proof: predicate induction of ~.

Lemma (Progress)

If $\Sigma, \Pi \models \mathrm{WP}(e, Q)$ and e is not a value then there exists Σ', Π, e' such that $\Sigma, \Pi, e \leadsto \Sigma', \Pi', e'$

Proof: structural induction of e.

Corollary (Soundness)

If Σ , $\Pi \models WP(e, Q)$ then

- ightharpoonup e executes safely in Σ , Π .
- if execution terminates, Q holds in the final state

Labels: motivation

Ability to refer to past values of variables

```
{ true }
let v = r in (r <- v + 42; v)
{ r = r@0ld + 42 ∧ result = r@0ld }

{ true }
let tmp = x in x <- y; y <- tmp
{ x = y@0ld ∧ y = x@0ld }

SUM revisited:
{ y ≥ 0 }
L:
while y > 0 do
invariant { x + y = x@L + y@L }
x <- x + 1; y <- y - 1
{ x = x@0ld + y@0ld ∧ y = 0 }</pre>
```

Labels: Syntax and Typing

Add in syntax of *terms*:

```
t := x@L (labeled variable access)
```

Add in syntax of *expressions*:

```
e ::= L:e (labeled expressions)
```

Typing:

- only mutable variables can be accessed through a label
- labels must be declared before use

Implicitly declared labels:

- ► Here, available in every formula
- Old, available in post-conditions

New rules for WP

New rules for computing WP:

```
WP(x < t, Q) = Q[x@Here \leftarrow t@Here]

WP(L: e, Q) = WP(e, Q)[x@L \leftarrow x@Here \mid x \text{ any variable}]
```

Exercise:

$$WP(L : x < x + 42, x@Here > x@L) = ?$$

Labels: Operational Semantics

Program state

- becomes a collection of maps indexed by labels
- \blacktriangleright value of variable x at label L is denoted $\Sigma(x, L)$

New semantics of variables in terms:

```
[x]_{\Sigma,\Pi} = \Sigma(x, Here)
[x@L]_{\Sigma,\Pi} = \Sigma(x, L)
```

The operational semantics of expressions is modified as follows

```
\Sigma, \Pi, x \leftarrow val \implies \Sigma\{(x, Here) \leftarrow val\}, \Pi, ()
\Sigma, \Pi, L : e \implies \Sigma\{(x, L) \leftarrow \Sigma(x, Here) \mid x \text{ any variable}\}, \Pi, e
```

Syntactic sugar: term t@L

- attach label L to any variable of t that does not have an explicit label yet
- example:(x + y@K + 2)@L + x is x@L + y@K + 2 + x@Here

Example: computation of the GCD

Euclide's algorithm:

```
requires { x ≥ 0 ∧ y ≥ 0 }
ensures { result = gcd(x@0ld,y@0ld) }
= L:
while y > 0 do
   invariant { x ≥ 0 ∧ y ≥ 0 }
   invariant { gcd(x,y) = gcd(x@L,y@L) }
   let r = mod x y in x <- y; y <- r
done;
x</pre>
```

See file gcd_euclid_labels.mlw

Mutable Local Variables

We extend the syntax of expressions with

$$e ::= let ref id = e in e$$

Example: isgrt revisited

```
val ref x : int
val ref res : int
res <- 0;
let ref sum = 1 in
while sum < x do
 res <- res + 1; sum <- sum + 2 * res + 1
done
```

Mutable Local Variables: WP rules

Rules are exactly the same as for global variables

WP(let ref
$$x = e_1$$
 in e_2 , Q) = WP(e_1 , WP(e_2 , Q)[$x \leftarrow \text{result}$])

$$WP(x \leftarrow e, Q) = WP(e, Q[x \leftarrow result])$$

$$WP(L:e,Q) = WP(e,Q)[x@L \leftarrow x@Here \mid x \text{ any variable}]$$

Operational Semantics

$$\Sigma, \Pi, e \rightsquigarrow \Sigma', \Pi', e'$$

□ no longer contains just immutable variables

$$\frac{\Sigma, \Pi, e_1 \leadsto \Sigma', \Pi', e_1'}{\Sigma, \Pi, \text{let ref } x = e_1 \text{ in } e_2 \leadsto \Sigma', \Pi', \text{let ref } x = e_1' \text{ in } e_2}$$

$$\overline{\Sigma, \Pi, \text{let ref } x = v \text{ in } e \leadsto \Sigma, \Pi\{(x, Here) \leftarrow v\}, e}$$

$$\frac{x \text{ local variable}}{\Sigma, \Pi, x \hookleftarrow v \leadsto \Sigma, \Pi\{(x, Here) \leftarrow v\}, e}$$

And labels too

Functions

Program structure:

 $prog ::= decl^*$ decl ::= vardecl | fundecl vardecl ::= val ref id : basetype fundecl ::= let id((param,)*):basetype contract body e param ::= id : basetype

contract ::= requires t writes $(id_1)^*$ ensures t

Function definition:

- Contract:
 - pre-condition
 - post-condition (label Old available)
 - assigned variables: clause writes
- ► Body: expression

Example: isqrt

Typing

Definition *d* of function *f*:

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

Well-formed definitions:

```
\Gamma' = \{x_i : \tau_i \mid 1 \le i \le n\} \cdot \Gamma \qquad \vec{w} \subseteq \Gamma
\Gamma' \vdash Pre, Post : formula \qquad \Gamma' \vdash Body : \tau
\vec{w}_g \subseteq \vec{w} \text{ for each call } g \qquad y \in \vec{w} \text{ for each assign } y
\Gamma \vdash d : wf
```

where Γ contains the global declarations

Example using Old label

```
val ref res: int

let incr(x:int)
   requires true
   writes res
   ensures res = res@0ld + x
body
   res <- res + x</pre>
```

Typing: function calls

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

Well-typed function calls:

$$\frac{\Gamma \vdash t_i : \tau_i}{\Gamma \vdash f(t_1, \ldots, t_n) : \tau}$$

Note: the t_i are immutable expressions

Operational Semantics

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

$$\frac{\Pi' = \{x_i \mapsto \llbracket t_i \rrbracket_{\Sigma,\Pi}\} \qquad \Sigma, \Pi' \models \textit{Pre}}{\Sigma, \Pi, f(t_1, \dots, t_n) \leadsto \Sigma, \Pi, (\textit{Old} : \mathsf{frame}(\Pi', \textit{Body}, \textit{Post}))}$$

Blocking Semantics

Execution blocks at call if pre-condition does not hold

WP Rule of Function Call

let
$$f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau$$
 requires Pre writes \vec{w} ensures $Post$ body $Body$

$$WP(f(t_1,...,t_n),Q) = Pre[x_i \leftarrow t_i] \land \forall \vec{v}, (Post[x_i \leftarrow t_i, w_i \leftarrow v_i, w_i@Old \leftarrow w_i] \rightarrow Q[w_i \leftarrow v_i])$$

Modular Proof Methodology

When calling function f, only the contract of f is visible, not its body

Operational Semantics of Function Call

frame is a dummy expression that keeps track of the *local variables* of the callee:

$$\frac{\Sigma,\Pi,\boldsymbol{e}\leadsto\Sigma',\Pi',\boldsymbol{e}'}{\Sigma,\Pi'',(\mathsf{frame}(\Pi,\boldsymbol{e},\boldsymbol{P}))\leadsto\Sigma',\Pi'',(\mathsf{frame}(\Pi',\boldsymbol{e}',\boldsymbol{P}))}$$

It also checks that the *post-condition* holds at the end:

$$\frac{\Sigma, \Pi' \models P[\mathsf{result} \leftarrow v]}{\Sigma, \Pi, (\mathsf{frame}(\Pi', v, P)) \leadsto \Sigma, \Pi, v}$$

Blocking Semantics

Execution blocks at return if post-condition does not hold

Example: isqrt(42)

Exercise: prove that $\{true\}isqrt(42)\{result = 6\}$ holds

```
val isqrt(x:int): int
  requires x ≥ 0
  writes (nothing)
  ensures result ≥ 0 ∧
        sqr(result) ≤ x < sqr(result + 1)</pre>
```

Abstraction of sub-programs

- ► Keyword val introduces a function with a contract but without body
- writes clause is mandatory in that case

Example: Incrementation

```
val res: ref int

val incr(x:int):unit
  writes res
  ensures res = res@Old + x
```

Exercise: Prove that $\{res = 6\}incr(36)\{res = 42\}$ holds

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Soundness Theorem for a Complete Program

Assuming that for each function defined as

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{W}
ensures Post
body Body
```

we have

- ightharpoonup variables assigned in *Body* belong to \vec{w} ,
- ▶ \models *Pre* \rightarrow WP(*Body*, *Post*)[w_i @*Old* \leftarrow w_i] holds,

then for any formula Q and any expression e, if $\Sigma, \Pi \models WP(e, Q)$ then execution of Σ, Π, e is *safe*

Remark: (mutually) recursive functions are allowed

Termination

Goal

Prove that a program terminates (on all inputs satisfying the precondition)

Amounts to show that

- loops never execute infinitely many times
- ▶ (mutual) recursive calls cannot occur infinitely many times

Case of loops

Solution: annotate loops with *loop variants*

- ▶ a term that decreases at each iteration
- ▶ for some *well-founded ordering* \prec (i.e. there is no infinite sequence $val_1 \succ val_2 \succ val_3 \succ \cdots$
- A typical ordering on integers:

$$x \prec y = x < y \land 0 \le y$$

Operational semantics

Syntax

New syntax construct:

```
e ::= while e invariant I variant t, \prec do e
```

Example:

```
{ y ≥ 0 }
L:
while y > 0 do
  invariant { x + y = x@L + y@L }
  variant { y }
  x <- x + 1; y <- y - 1
{ x = x@Old + y@Old ∧ y = 0 }</pre>
```

Weakest Precondition

```
 \begin{split} & \text{WP(while $c$ invariant $I$ variant $t, \prec$ do $e$, $Q$) = \\ & \textit{I} \land \\ & \forall \vec{v}, (I \rightarrow \text{WP($L$ : $c$, if $result$ then $\text{WP($e$, $I \land t \prec t@L$)}$ else $Q$))} \\ & [w_i \leftarrow v_i] \end{split}
```

In practice with Why3

- presence of loop variants tells if one wants to prove termination or not
- warning issued if no variant given
- keyword diverges in contract for non-terminating functions
- default ordering determined from type of t

Examples

Exercise: find adequate variants

```
\begin{array}{l} i <- 0;\\ \mbox{while } i \leq 100\\ \mbox{invariant }? \mbox{variant }?\\ \mbox{do } i <- i{+}1 \mbox{ done}; \end{array}
```

```
while sum ≤ x
invariant ? variant ?
do
  res <- res + 1; sum <- sum + 2 * res + 1
done;</pre>
```

Case of mutual recursion

Assume two functions $f(\vec{x})$ and $g(\vec{y})$ that call each other

- ightharpoonup each should be given its own variant v_f (resp. v_g) in their contract
- ▶ with the *same* well-founded ordering ≺

When f calls $g(\vec{t})$ the WP should include

$$v_a[\vec{y} \leftarrow \vec{t}] \prec v_f@Init$$

and symmetrically when g calls f

Recursive Functions: Termination

If a function is recursive, termination of call can be proved, provided that the function is annotated with a *variant*

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
variant var, \prec
writes \vec{w}
ensures Post
body Body
```

WP for function call:

```
WP(f(t_1,...,t_n),Q) = Pre[x_i \leftarrow t_i] \land var[x_i \leftarrow t_i] \prec var@Init \land \\ \forall \vec{y}, (Post[x_i \leftarrow t_i][w_i \leftarrow y_i][w_i@Old \leftarrow w_i] \rightarrow Q[w_i \leftarrow y_i])
```

with Init a label assumed to be present at the start of Body

Home Work 1: McCarthy's 91 Function

```
f91(n) = \text{if } n \le 100 \text{ then } f91(f91(n+11)) \text{ else } n-10
```

Find adequate specifications

```
let f91(n:int): int
  requires ?
  variant ?
  writes ?
  ensures ?
body
  if n \le 100 then f91(f91(n + 11)) else n - 10
```

Use canvas file mccarthy.mlw

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

(First-Order) Logic as a Modeling Language Ghost code Axiomatic Definitions

Programs on Arrays

Why3 Logic Language

- ► (First-order) logic, built-in arithmetic (integers and reals)
- ► Definitions à la ML
 - ▶ logic (i.e. pure) functions, predicates
 - structured types, pattern-matching (next lecture)
- ► type polymorphism à la ML
- ▶ higher-order logic as a built-in theory of functions
- Axiomatizations
- Inductive predicates (next lecture)

Important note

Logic functions and predicates are always totally defined

About Specification Languages

Specification languages:

- ► Algebraic Specifications: CASL, Larch
- ► Set theory: VDM, Z notation, Atelier B
- ► Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- ► Object-Oriented: Eiffel, JML, OCL
- **>** ...

Case of Why3, ACSL, Dafny: trade-off between

- expressiveness of specifications
- support by automated provers

Definition of new Logic Symbols

Logic functions defined as

```
function f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau = e
```

Predicate defined as

```
predicate p(x_1 : \tau_1, \ldots, x_n : \tau_n) = e
```

where τ_i , τ are logic types (not references)

- ► No recursion allowed (yet)
- ► No side effects
- ▶ Defines *total* functions and predicates

Logic Symbols: Examples

```
function sqr(x:int) = x * x

predicate prime(x:int) =
    x ≥ 2 ∧
    forall y z:int. y ≥ 0 ∧ z ≥ 0 ∧ x = y*z →
        y=1 ∨ z=1
```

Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
q <- 0; r <- x;
while r \geq y do
  invariant { x = q * y + r }
  r <- r - y; q <- q + 1</pre>
```

Definition of new logic types: Product Types

► Tuples types are built-in:

```
type pair = (int, int)
```

► Record types can be defined:

```
type point = { x:real; y:real }
```

Fields are immutable

► We allow let with pattern, e.g.

```
let (a,b) = ... in ...
let { x = a; y = b } = ... in ...
```

Dot notation for records fields, e.g.

```
p.x + p.y
```

Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
r <- x;
while r > y do
  invariant { exists q. x = q * y + r }
r <- r - y;</pre>
```

Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
q <- 0; r <- x;
while r ≥ y do
  invariant { x = q * y + r }
r <- r - y; q <- q + 1</pre>
```

Home Work 2

Extend the post-condition of Euclid's algorithm for GCD to express the Bézout property:

```
\exists a, b, result = x * a + y * b
```

Prove the program by adding appropriate ghost local variables

Use canvas file exo_bezout.mlw

Introducing Ghost Code

Example: Euclidean division / just compute the remainder:

```
q <- 0; r <- x;
while r > y do
   invariant { x = q * y + r }
r <- r - y; q <- q + 1</pre>
```

Ghost code, ghost variables

- ► Cannot interfere with regular code (checked by typing)
- ► Visible only in annotations

(See Why3 file euclid_rem.mlw)

Axiomatic Definitions

Function and predicate declarations of the form

```
function f(\tau, ..., \tau_n) : \tau predicate p(\tau, ..., \tau_n)
```

together with axioms

```
axiom id: formula
```

specify that f (resp. p) is any symbol satisfying the axioms

Axiomatic Definitions

Example: division

```
function div(real, real): real
axiom mul_div:
  forall x,y. y≠0 → div(x,y)*y = x
```

Example: factorial

Underspecified Logic Functions and Run-time Errors

Error "Division by zero" can be modeled by an abstract function

```
val div_real(x:real,y:real):real
  requires y \neq 0.0
  ensures result = div(x,y)
```

Reminder

Execution blocks when an invalid annotation is met

Axiomatic Definitions

► Functions/predicates are typically underspecified ⇒ we can model partial functions in a logic of total functions

Warning about soundness

Axioms may introduce inconsistencies

```
function div(real, real):real
axiom mul_div: forall x,y. div(x,y)*y = x
implies 1 = div(1,0)*0 = 0
```

More Ghosts: Programs turned into Logic Functions

If the program f is

► Proved terminating

► Has no side effects

let $f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau$ requires Prevariant var, \prec ensures Postbody Body

then there exists a logic function:

```
function f \tau_1 \ldots \tau_n : \tau
lemma f_{spec} : \forall x_1, \ldots, x_n. \ \textit{Pre} \rightarrow \textit{Post}[\text{result} \leftarrow \textit{f}(x_1, \ldots, x_n)]
```

and if Body is a pure term then

lemma $f_{body}: \forall x_1, \dots, x_n. \ \textit{Pre} \rightarrow f(x_1, \dots, x_n) = \textit{Body}$

Offers an important alternative to axiomatic definitions

In Why3: done using keywords let function

Example: axiom-free specification of factorial

```
let function fact (n:int) : int
  requires { n ≥ 0 }
  variant { n }
= if n=0 then 1 else n * fact(n-1)
```

generates the logic context

More Ghosts: Lemma functions

▶ if a program function is without side effects and terminating:

```
let f(x_1:\tau_1,\ldots,x_n:\tau_n): unit requires Pre variant var, \prec ensures Post body Body then it is a proof of
```

$$\forall x_1, \dots, x_n. Pre \rightarrow Post$$

▶ If f is recursive, it simulates a proof by induction

Axiomatic Definitions: Example of Factorial

Exercise: Find appropriate precondition, postcondition, loop invariant, and variant, for this program:

```
let fact_imp (x:int): int
  requires ?
  ensures ?
body
  let ref y = 0 in
  let ref res = 1 in
  while y < x do
    y <- y + 1;
    res <- res * y
  done;
  res</pre>
```

See file fact.mlw

Example: sum of odds

```
function sum_of_odd_numbers int : int
  (** 'sum_of_odd_numbers n' denote the sum of
    odd numbers from '1' to '2n-1' *)

axiom sum_of_odd_numbers_base : sum_of_odd_numbers 0 = 0

axiom sum_of_odd_numbers_rec : forall n. n ≥ 1 →
    sum_of_odd_numbers n = sum_of_odd_numbers (n-1) + 2*n-1

goal sum_of_odd_numbers_any:
    forall n. n ≥ 0 → sum_of_odd_numbers n = n * n
```

See file arith_lemma_function.mlw

Example: sum of odds as lemma function

```
let rec lemma sum_of_odd_numbers_any (n:int)
  requires { n ≥ 0 }
  variant { n }
  ensures { sum_of_odd_numbers n = n * n }
  = if n > 0 then sum_of_odd_numbers_any (n-1)
```

Home Work 4

Prove Fermat's little theorem for case p = 3:

$$\forall x, \exists y. x^3 - x = 3y$$

using a lemma function

Home work 3

Prove the helper lemmas stated for the fast exponentiation algorithm

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions

Termination, Variants

Advanced Modeling of Programs

Programs on Arrays

Higher-order logic as a built-in theory

- ▶ type of *maps* : $\tau_1 \rightarrow \tau_2$
- ▶ lambda-expressions: fun $x : \tau \rightarrow t$

Definition of selection function:

```
function select (f: \alpha \rightarrow \beta) (x: \alpha) : \beta = f X
```

Definition of function update:

```
function store (f: \alpha \to \beta) (x: \alpha) (v: \beta) : \alpha \to \beta = fun (y: \alpha) \to if x = y then v else f y
```

SMT (first-order) theory of "functional arrays"

```
lemma select_store_eq: forall f:\alpha \to \beta, x:\alpha, v:\beta. select(store(f,x,v),x) = v
lemma select_store_neq: forall f:\alpha \to \beta, x y:\alpha, v:\beta. x \neq y \to select(store(f,x,v),y) = select(f,j)
```

Simple Example

```
val ref a: int → int

let test()
  writes a
  ensures select(a,0) = 13 (* a[0] = 13 *)
body
  a <- store(a,0,13); (* a[0] <- 13 *)
  a <- store(a,1,42) (* a[1] <- 42 *)</pre>
```

Exercise: prove this program

Arrays as Mutable Variables of type "Map"

- ightharpoonup Array variable: mutable variable of type int ightharpoonup lpha
- In a program, the standard assignment operation

```
a[i] <- e
```

is interpreted as

```
a <- store(a,i,e)
```

Simple Example

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
= select(store(a, 0, 13), 0) = 13
= 13 = 13
= true
```

Note how we use both lemmas *select_store_eq* and *select_store_neq*

Example: Swap

Permute the contents of cells *i* and *j* in an array *a*:

Example: Swap again

Arrays as Variables of Type (length \times map)

- ► Goal: model "out-of-bounds" run-time errors
- Array variable: mutable variable of type array α

- ► a[i] interpreted as a call to get(a,i)
- ▶ a[i] <- v interpreted as a call to set(a,i,v)</p>

Note about Arrays in Why3

```
use array.Array
syntax: a.length, a[i], a[i]<-v</pre>
```

Example: swap

Exercises on Arrays

- Prove Swap using WP
- Prove the program

```
let test()
  requires
    select(a,0) = 13 \( \times \) select(a,1) = 42 \( \times \)
    select(a,2) = 64
  ensures
    select(a,0) = 64 \( \times \) select(a,1) = 42 \( \times \)
    select(a,2) = 13

body
  swap(0,2)
```

▶ Specify, implement, and prove a program that increments by 1 all cells, between given indexes i and j, of an array of reals

Home Work 4: Binary Search

```
low = 0; high = n - 1; while low \le high:

let m be the middle of low and high if a[m] = v then return m if a[m] < v then continue search between m and high if a[m] > v then continue search between low and m
```

See file bin_search.mlw

Exercise: Search Algorithms

```
var a: array real

let search(n:int, v:real): int
  requires 0 ≤ n
  ensures { ? }
= ?
```

- 1. Formalize postcondition: if v occurs in a, between 0 and n-1, then result is an index where v occurs, otherwise result is set to -1
- 2. Implement and prove linear search:

```
res < -1; for each i from 0 to n-1: if a[i] = v then res < i; return res
```

See file lin_search.mlw

Home Work 5: "for" loops

```
Syntax: for i = e_1 to e_2 do e Typing:
```

- i visible only in e, and is immutable
- $ightharpoonup e_1$ and e_2 must be of type int, e must be of type unit

Operational semantics: (assuming e_1 and e_2 are values v_1 and v_2)

$$rac{ extstyle V_1 > extstyle V_2}{\sum, \Pi, ext{for } extstyle i = extstyle V_1 ext{ to } extstyle V_2 ext{ do } extstyle e \sim \sum, \Pi, egin{align*} (egin{align*} egin{align*} e$$

$$rac{ extstyle V_1 \leq extstyle V_2 }{ \Sigma, \Pi, ext{for } i = extstyle V_1 ext{ to } extstyle V_2 ext{ do } e \!\leadsto\! \Sigma, \Pi, } egin{array}{l} (ext{let } i = extstyle V_1 ext{ in } e); \ (ext{for } i = extstyle V_1 + 1 ext{ to } extstyle V_2 ext{ do } e) \end{array}$$

Home Work: "for" loops

Propose a Hoare logic rule for the for loop:

$$\frac{\{?\}e\{?\}}{\{?\}\text{for }i=v_1\text{ to }v_2\text{ do }e\{?\}}$$

Propose a rule for computing the WP:

WP(for
$$i = v_1$$
 to v_2 invariant I do e , Q) =?

That's all for today, Merry Christmas!

- Several home work exercises to do
- Project text on the web page soon, and announced by e-mail