Switch to a ML-style programming language Functions and Function calls More on Specification Languages and Application to Arrays

Claude Marché

Cours MPRI 2-36-1 "Preuve de Programme"

December 14th, 2021

Reminder of the last lecture

- Logics and automated prover capabilities
 - propositional logic
 - first-order logic
 - theories
 - equality
 - integer arithmetic
- classical Floyd-Hoare logic
 - very simple "IMP" programming language
 - deduction rules for triples {Pre}s{Post}
- weakest liberal pre-conditions (Dijkstra)
 - function WLP(s, Q) returning a logic formula
 - ▶ soundness: if $P \to WLP(s, Q)$ then triple $\{P\}s\{Q\}$ is valid
- main "creative" activity: discovering loop invariants

Exercise 1

Consider the following (inefficient) program for computing the sum a + b

```
x <- a; y <- b;
while y > 0 do
  x <- x + 1; y <- y - 1</pre>
```

(Why3 file to fill in: imp_sum.mlw)

- Propose a post-condition stating that the final value of x is the sum of the values of a and b
- Find an appropriate loop invariant
- Prove the program

Exercise 2

The following program is one of the original examples of Floyd

```
q <- 0; r <- x;
while r >= y do
    r <- r - y; q <- q + 1</pre>
```

(Why3 file to fill in: imp_euclidean_div.mlw)

- Propose a formal precondition to express that x is assumed non-negative, y is assumed positive, and a formal post-condition expressing that q and r are respectively the quotient and the remainder of the Euclidean division of x by y
- Find appropriate loop invariants and prove the correctness of the program

This Lecture's Goals

- Swich to a "modern" ML-style language
- Extend that language:
 - Labels for reasoning on the past
 - Local mutable variables
 - Sub-programs, function calls, modular reasoning
- ► (First-order) logic as a *modeling language*
 - Definitions of new types, product types
 - Definitions of functions, of predicates
 - Axiomatizations
- Application:
 - a bit of higher-order logic
 - program on Arrays

Outline

"Modern" Approach, Blocking Semantics A ML-like Programming Language Blocking Operational Semantics Weakest Preconditions Revisited

Syntax extensions

Advanced Modeling of Programs

Programs on Arrays

Beyond IMP and classical Hoare Logic

Extended language

- more data types
- logic variables: local and immutable
- labels in specifications

Handle termination issues:

- prove properties on non-terminating programs
- prove termination when wanted

Prepare for adding later:

- run-time errors (how to prove their absence)
- local mutable variables, functions
- complex data types

Extended Syntax: Generalities

- We want a few basic data types : int, bool, real, unit
- No difference between expressions and statements anymore

Basically we consider

- A purely functional language (ML-like)
- ► with *global mutable variables*

very restricted notion of modification of program states

Base Data Types, Operators, Terms

- unit type: type unit, only one constant ()
- Booleans: type bool, constants True, False, operators and, or, not
- ▶ integers: type int, operators +, -, × (no division)
- reals: type real, operators $+, -, \times$ (no division)
- Comparisons of integers or reals, returning a boolean
- "if-expression": written if b then t_1 else t_2

Local logic variables

We extend the syntax of terms by

$$t ::= let V = t in t$$

Example: approximated cosine

```
let cos_x =
   let y = x*x in
   1.0 - 0.5 * y + 0.04166666 * y * y
in
...
```

Practical Notes

- ► Theorem provers (inc. Alt-Ergo, CVC4, Z3) typically support such a typed logic
- may also support if-expressions and let bindings

Alternatively, Why3 manages to transform terms and formulas when needed (e.g. transformation of if-expressions and/or let-expressions into equivalent formulas)

Syntax: Formulas

It is (typed) first-order logic, as in previous lecture, but also with addition of local binding:

Typing

Types:

```
	au ::= int | real | bool | unit
```

Typing judgment:

$$\Gamma \vdash t : \tau$$

where Γ maps identifiers to types:

- either $v : \tau$ (logic variable, immutable)
- either x: mut τ (program variable, mutable)

Important

- a mutable variable is not a value (it is not a "reference" value)
- as such, there is no "reference on a reference"
- ► no aliasing

Typing rules

Constants:

$$\overline{\Gamma \vdash n : \text{int}} \qquad \overline{\Gamma \vdash r : \text{real}}$$

$$\overline{\Gamma \vdash \textit{True} : \text{bool}} \qquad \overline{\Gamma \vdash \textit{False} : \text{bool}}$$

$$\frac{\textit{V} : \tau \in \Gamma}{\Gamma \vdash \textit{V} : \tau} \qquad \frac{\textit{X} : \text{mut } \tau \in \Gamma}{\Gamma \vdash \textit{X} : \tau}$$

Let binding:

Variables:

$$\frac{\Gamma \vdash t_1 : \tau_1 \qquad \{v : \tau_1\} \cdot \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash \text{let } v = t_1 \text{ in } t_2 : \tau_2}$$

- All terms have a base type (not a "reference")
- In practice: Why3, unlike OCaml, does not require to write !x for mutable variables

Formal Semantics: Terms and Formulas

Program states are augmented with a stack of local (immutable) variables

- Σ: maps program variables to values (a map)
- \blacktriangleright π : maps logic variables to values (a stack)

Warning

Semantics is a partial function, it is not defined on ill-typed formulas

Common notation for formulas

```
\Sigma, \pi \models \varphi \text{ means } \llbracket \varphi \rrbracket_{\Sigma,\pi} = \text{true}
```

Type Soundness Property

Our logic language satisfies the following standard property of purely functional language

Theorem (Type soundness)

Every well-typed terms and well-typed formulas have a semantics

Proof: induction on the derivation tree of well-typing

Expressions: generalities

- Former statements of IMP are now expressions of type unit Expressions may have Side Effects
- Statement skip is identified with ()
- The sequence is replaced by a local binding
- From now on, the condition of the if then else and the while do in programs is a Boolean expression

Syntax

▶ sequence e_1 ; e_2 : syntactic sugar for

let
$$v = e_1$$
 in e_2

when e_1 has type unit and v not used in e_2

Toy Examples

```
z \leftarrow if x >= y then x else y
let v = r in (r < -v + 42; v)
while (x < -x - 1; x > 0)
      (* (--x > 0) in C *)
  do ()
while (let v = x in x < -x - 1; v > 0)
      (* (x--> 0) in C*)
  do ()
```

Typing Rules for Expressions

Assignment:

$$\frac{X : \mathsf{mut} \ \tau \in \Gamma \qquad \Gamma \vdash \theta : \tau}{\Gamma \vdash X \leftarrow \theta : \mathsf{unit}}$$

Let binding:

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \{v : \tau_1\} \cdot \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \mathsf{let} \ v = e_1 \ \mathsf{in} \ e_2 : \tau_2}$$

Conditional:

$$\frac{\Gamma \vdash c : \mathsf{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \mathsf{if} \ c \ \mathsf{then} \ e_1 \ \mathsf{else} \ e_2 : \tau}$$

Loop:

$$\frac{\Gamma \vdash c : bool \qquad \Gamma \vdash e : unit}{\Gamma \vdash while \ c \ do \ e : unit}$$

Operational Semantics

Novelty w.r.t. IMP

Need to precise the order of evaluation: left to right (e.g. x < 0; ((x < 1); 2) + x) = 2 or 3 ?)

one-step execution has the form

$$\Sigma, \pi, e \leadsto \Sigma', \pi', e'$$

 π is the *stack of local variables*

values do not reduce

Operational Semantics

Assignment

$$\frac{\Sigma, \pi, \boldsymbol{e} \leadsto \Sigma', \pi', \boldsymbol{e}'}{\Sigma, \pi, \boldsymbol{x} \lessdot \boldsymbol{e} \leadsto \Sigma', \pi', \boldsymbol{x} \lessdot \boldsymbol{e}'}$$

$$\overline{\Sigma, \pi, \boldsymbol{x} \lessdot \boldsymbol{val} \leadsto \Sigma[\boldsymbol{x} \leftarrow \boldsymbol{val}], \pi, ()}$$

Let binding

$$\frac{\Sigma, \pi, \boldsymbol{e}_1 \leadsto \Sigma', \pi', \boldsymbol{e}_1'}{\Sigma, \pi, \text{let } \boldsymbol{v} = \boldsymbol{e}_1 \text{ in } \boldsymbol{e}_2 \leadsto \Sigma', \pi', \text{let } \boldsymbol{v} = \boldsymbol{e}_1' \text{ in } \boldsymbol{e}_2}$$

$$\overline{\Sigma, \pi, \text{let } v = val \text{ in } e \rightsquigarrow \Sigma, \{v = val\} \cdot \pi, e}$$

Operational Semantics, Continued

Binary operations

$$\frac{\Sigma, \pi, \textbf{\textit{e}}_1 \leadsto \Sigma', \pi', \textbf{\textit{e}}_1'}{\Sigma, \pi, \textbf{\textit{e}}_1 + \textbf{\textit{e}}_2 \leadsto \Sigma', \pi', \textbf{\textit{e}}_1' + \textbf{\textit{e}}_2}$$

$$\frac{\Sigma, \pi, \textbf{\textit{e}}_2 \leadsto \Sigma', \pi', \textbf{\textit{e}}_2'}{\Sigma, \pi, \textit{\textit{val}}_1 + \textbf{\textit{e}}_2 \leadsto \Sigma', \pi', \textit{\textit{val}}_1 + \textbf{\textit{e}}_2'}$$

$$\frac{\textit{val} = \textit{val}_1 + \textit{val}_2}{\Sigma, \pi, \textit{val}_1 + \textit{val}_2 \leadsto \Sigma, \pi, \textit{val}}$$

Operational Semantics, Continued

Conditional

$$\frac{\Sigma, \pi, \textbf{\textit{c}} \leadsto \Sigma', \pi', \textbf{\textit{c}}'}{\Sigma, \pi, \text{if } \textbf{\textit{c}} \text{ then } \textbf{\textit{e}}_1 \text{ else } \textbf{\textit{e}}_2 \leadsto \Sigma', \pi', \text{if } \textbf{\textit{c}}' \text{ then } \textbf{\textit{e}}_1 \text{ else } \textbf{\textit{e}}_2}$$

$$\overline{\Sigma, \pi, \text{if } \textit{True} \text{ then } \textbf{\textit{e}}_1 \text{ else } \textbf{\textit{e}}_2 \leadsto \Sigma, \pi, \textbf{\textit{e}}_1}}$$

$$\overline{\Sigma, \pi, \text{if } \textit{False} \text{ then } \textbf{\textit{e}}_1 \text{ else } \textbf{\textit{e}}_2 \leadsto \Sigma, \pi, \textbf{\textit{e}}_2}}$$

Loop

$$\begin{array}{c} \Sigma,\pi, \text{while } \textit{\textbf{C}} \text{ do } \textit{\textbf{e}} \leadsto \\ \Sigma,\pi, \text{if } \textit{\textbf{C}} \text{ then } (\textit{\textbf{e}}; \text{while } \textit{\textbf{C}} \text{ do } \textit{\textbf{e}}) \text{ else } () \end{array}$$

Context Rules versus Let Binding

Remark: most of the context rules can be avoided

► An equivalent operational semantics can be defined using let *v* = ... in ... instead, e.g.:

$$\frac{\textit{v}_1, \textit{v}_2 \text{ fresh}}{\Sigma, \pi, \textit{e}_1 + \textit{e}_2 \leadsto \Sigma, \pi, \text{let } \textit{v}_1 = \textit{e}_1 \text{ in let } \textit{v}_2 = \textit{e}_2 \text{ in } \textit{v}_1 + \textit{v}_2}$$

Thus, only the context rule for let is needed

Type Soundness

Theorem

Every well-typed expression evaluate to a value or execute infinitely

Classical proof:

- type is preserved by reduction
- execution of well-typed expressions that are not values can progress

Blocking Semantics: General Ideas

- add assertions in expressions
- failed assertions = "run-time errors"

First step: modify expression syntax with

- new expression: assertion
- adding loop invariant in loops

```
e ::= assert p (assertion)
| while e invariant I do e (annotated loop)
```

Toy Examples

```
z < -if x > = y then x else y ;
assert (z >= x / \langle z >= y)
while (x < -x - 1; x > 0)
      (* (--x > 0) in C *)
  invariant x >= 0 do ();
assert (x = 0)
while (let v = x in x < -x - 1; v > 0)
      (* (x--> 0) in C *)
  invariant x \ge -1 do ():
assert (x = -1)
```

Blocking Semantics: Modified Rules

$$\frac{ \llbracket P \rrbracket_{\Sigma,\pi} \text{ holds} }{\Sigma,\pi, \text{assert } P \leadsto \Sigma,\pi,()}$$

$[I]_{\Sigma,\pi}$ holds

 $\Sigma, \pi, \text{ while } c \text{ invariant } l \text{ do } e \leadsto$ $\Sigma, \pi, \text{ if } c \text{ then } (e; \text{ while } c \text{ invariant } l \text{ do } e) \text{ else } ()$

Important remark

Execution blocks as soon as an invalid annotation is met

Definition (Safety of execution)

Execution of an expression in a given state is *safe* if it does not block: either terminates on a value or runs infinitely.

Hoare triples: result value in post-conditions

New addition in the logic language:

- keyword result in post-conditions
- denotes the value of the expression executed

Example:

```
{ true }
if x >= y then x else y
{ result >= x /\ result >= y }
```

Hoare triples: Soundness

Definition (validity of a triple)

A triple $\{P\}e\{Q\}$ is *valid* if for any state Σ, π satisfying P, e executes safely in Σ, π , and if it terminates, the final state satisfies Q

Difference with first lecture

Validity of a triple now implies safety of its execution, even if it does not terminate

Weakest Preconditions Revisited

Goal:

construct a new calculus WP(e, Q)

Expected property: in any state satisfying WP(e, Q),

- e is guaranteed to execute safely
- if it terminates, Q holds in the final state

Difference with first lecture

This calculus is no more "liberal", the computed precondition guarantees safety of execution, even if it does not terminate

New Weakest Precondition Calculus

Pure expressions (i.e. without side-effects, a.k.a. "terms")

$$WP(t, Q) = Q[result \leftarrow t]$$

'let' binding

$$\begin{aligned} \operatorname{WP}(\operatorname{let} x &= e_1 \text{ in } e_2, Q) &= \\ \operatorname{WP}(e_1, (\operatorname{WP}(e_2, Q)[x \leftarrow \mathit{result}])) \end{aligned}$$

Reminder: sequence is a particular case of 'let'

$$WP((e_1; e_2), Q) = WP(e_1, WP(e_2, Q))$$

Weakest Preconditions, continued

Assignment:

$$\mathrm{WP}(\textit{x} < \textit{e}, \textit{Q}) = \mathrm{WP}(\textit{e}, \textit{Q}[\textit{result} \leftarrow (); \textit{x} \leftarrow \textit{result}])$$

Alternative:

$$\begin{aligned} & \mathrm{WP}(x < e, Q) &= \mathrm{WP}(\mathrm{let} \ v = e \ \mathrm{in} \ x < v, Q) \\ & \mathrm{WP}(x < t, Q) &= Q[\mathit{result} \leftarrow (); x \leftarrow t]) \end{aligned}$$

WP: Exercise

WP(let
$$v = x \text{ in } (x < x + 1; v), x > result) =?$$

WP: Exercise

WP(let
$$v = x \text{ in } (x < x + 1; v), x > result) =?$$

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result)$$

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result) = ?$$

$$\begin{aligned} & \text{WP}(\text{let } v = x \text{ in } (x \leftarrow x + 1; v), x > \textit{result}) \\ &= & \text{WP}(x, (\text{WP}((x \leftarrow x + 1; v), x > \textit{result})[v \leftarrow \textit{result}])) \end{aligned}$$

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result) = ?$$

- WP(let v = x in (x < x + 1; v), x > result) $= WP(x, (WP((x < x + 1; v), x > result)))[v \leftarrow result]))$ $= WP(x, (WP((x < x + 1; v), x > result)))[v \leftarrow result])$
- $= WP(x, (WP(x < x + 1, WP(\underline{v}, x > result)))[v \leftarrow result]))$

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result) = ?$$

```
 \begin{aligned} & \text{WP}(\text{let } v = x \text{ in } (x < x + 1; v), x > \textit{result}) \\ &= \text{WP}(\overline{x}, (\text{WP}(\underline{(x < x + 1; v)}, x > \textit{result})[v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\text{WP}(\overline{x < x + 1}, \text{WP}(\underline{v}, x > \textit{result})))[v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\text{WP}(x < x + 1, x > v))[v \leftarrow \textit{result}])) \end{aligned}
```

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result) = ?$$

```
 \begin{aligned} & \text{WP}(\text{let } v = x \text{ in } (x < x + 1; v), x > \textit{result}) \\ &= & \text{WP}(x, (\text{WP}((x < x + 1; v), x > \textit{result})[v \leftarrow \textit{result}])) \\ &= & \text{WP}(x, (\text{WP}(x < x + 1, \text{WP}(\underline{v}, x > \textit{result})))[v \leftarrow \textit{result}])) \\ &= & \text{WP}(x, (\text{WP}(\underline{x < x + 1}, x > v))[v \leftarrow \textit{result}])) \\ &= & \text{WP}(x, (\underline{x < x + 1}, x > v)[v \leftarrow \textit{result}])) \end{aligned}
```

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result) = ?$$

```
 \begin{aligned} & \text{WP}(\text{let } v = x \text{ in } (x \leqslant x + 1; v), x > \textit{result}) \\ &= \text{WP}(x, (\text{WP}((x \leqslant x + 1; v), x > \textit{result}) | v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\text{WP}(x \leqslant x + 1, \text{WP}(\underline{v}, x > \textit{result}))) | v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\text{WP}(\underline{x} \leqslant x + 1, x > v)) | v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (x + 1 > v) | v \leftarrow \textit{result}]) \\ &= \text{WP}(x, (x + 1 > \textit{result})) \end{aligned}
```

$$WP(let \ v = x \ in \ (x < x + 1; v), x > result) = ?$$

```
 \begin{aligned} & \text{WP}(\text{let } v = x \text{ in } (x < x + 1; v), x > \textit{result}) \\ &= \text{WP}(x, (\text{WP}((x < x + 1; v), x > \textit{result})[v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\text{WP}(x < x + 1, \text{WP}(\underline{v}, x > \textit{result})))[v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\text{WP}(\underline{x < x + 1}, x > v))[v \leftarrow \textit{result}])) \\ &= \text{WP}(x, (\underline{x + 1} > v)[v \leftarrow \textit{result}])) \\ &= \frac{\text{WP}(x, (x + 1 > \textit{result}))}{x + 1 > x} \end{aligned}
```

Weakest Preconditions, continued

Conditional

```
\operatorname{WP}(\text{if } e_1 \text{ then } e_2 \text{ else } e_3, Q) = \operatorname{WP}(e_1, \text{if } result \text{ then } \operatorname{WP}(e_2, Q) \text{ else } \operatorname{WP}(e_3, Q))
```

Alternative with let: (exercise!)

Weakest Preconditions, continued

Assertion

$$WP(assert P, Q) = P \wedge Q$$
$$= P \wedge (P \rightarrow Q)$$

(second version useful in practice)

While loop

```
egin{aligned} &\operatorname{WP}(\mathsf{while}\ c\ \mathsf{invariant}\ I\ \mathsf{do}\ e,\,Q) = &I \land &\\ &\forall ec{v}, (I 
ightarrow \mathrm{WP}(c,\mathsf{if}\ result\ \mathsf{then}\ \mathrm{WP}(e,I)\ \mathsf{else}\ Q))[w_i \leftarrow v_i] \end{aligned}
```

where w_1, \ldots, w_k is the set of assigned variables in expressions c and e and v_1, \ldots, v_k are fresh logic variables

Soundness of WP

Lemma (Preservation by Reduction)

If
$$\Sigma, \pi \models WP(e, Q)$$
 and $\Sigma, \pi, e \leadsto \Sigma', \pi', e'$ then $\Sigma', \pi' \models WP(e', Q)$

Proof: predicate induction of →.

Lemma (Progress)

If $\Sigma, \pi \models \mathrm{WP}(e, Q)$ and e is not a value then there exists Σ', π, e' such that $\Sigma, \pi, e \leadsto \Sigma', \pi', e'$

Proof: structural induction of e.

Corollary (Soundness)

If Σ , $\pi \models WP(e, Q)$ then

- ightharpoonup e executes safely in Σ , π .
- if execution terminates, Q holds in the final state

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions Labels

Local Mutable Variables

Functions and Functions Calls

Advanced Modeling of Programs

Programs on Arrays

Labels: motivation

Ability to refer to past values of variables

```
{ true }
  let v = r in (r < -v + 42; v)
  \{ r = r@0ld + 42 / result = r@0ld \}
  { true }
  let tmp = x in x < -y; y < -tmp
  \{ x = y@0ld / y = x@0ld \}
SUM revisited:
  \{ v >= 0 \}
  L:
  while y > 0 do
    invariant \{ x + y = x@L + y@L \}
    x < -x + 1; y < -y - 1
  \{ x = x@0ld + y@0ld / \ y = 0 \}
```

Labels: Syntax and Typing

Add in syntax of *terms*:

```
t := x@L (labeled variable access)
```

Add in syntax of *expressions*:

```
e ::= L : e (labeled expressions)
```

Typing:

- only mutable variables can be accessed through a label
- labels must be declared before use

Implicitly declared labels:

- Here, available in every formula
- Old, available everywhere except pre-conditions

Labels: Operational Semantics

Program state

- becomes a collection of maps indexed by labels
- ▶ value of variable x at label L is denoted $\Sigma(x, L)$

New semantics of variables in terms:

$$[x]_{\Sigma,\pi} = \Sigma(x, Here)$$

 $[x@L]_{\Sigma,\pi} = \Sigma(x, L)$

The operational semantics of expressions is modified as follows

$$\Sigma, \pi, x \leftarrow val \implies \Sigma\{(x, Here) \leftarrow val\}, \pi, ()$$

 $\Sigma, \pi, L : e \implies \Sigma\{(x, L) \leftarrow \Sigma(x, Here) \mid x \text{ any variable}\}, \pi, e$

Syntactic sugar: term t@L

- attach label L to any variable of t that does not have an explicit label yet
- example:(x + y@K + 2)@L + x is x@L + y@K + 2 + x@Here

New rules for WP

New rules for computing WP:

```
 WP(x < t, Q) = Q[x@Here \leftarrow t@Here] 
 WP(L: e, Q) = WP(e, Q)[x@L \leftarrow x@Here \mid x \text{ any variable}]
```

Exercise:

$$WP(L: x \leftarrow x + 42, x@Here > x@L) = ?$$

Example: computation of the GCD

(assuming notion of greatest common divisor exists in the logic)

Euclid's algorithm:

```
requires { x >= 0 /\ y >= 0 }
ensures { result = gcd(x@0ld,y@0ld) }
= L:
while y > 0 do
   invariant { ? }
   let r = mod x y in x <- y; y <- r
done;
x</pre>
```

See file gcd_euclid_labels.mlw

Mutable Local Variables

We extend the syntax of expressions with

```
e ::= let ref id = e in e
```

(note: I use "ref" instead of "mut" because of Why3)

Example: isqrt revisited

```
val ref x : int
val ref res : int

res <- 0;
let ref sum = 1 in
while sum <= x do
    res <- res + 1; sum <- sum + 2 * res + 1
done</pre>
```

Operational Semantics

$$\Sigma, \pi, e \leadsto \Sigma', \pi', e'$$

 π no longer contains just immutable variables

$$\frac{\Sigma, \pi, \textbf{\textit{e}}_1 \leadsto \Sigma', \pi', \textbf{\textit{e}}_1'}{\Sigma, \pi, \text{let ref } \textbf{\textit{x}} = \textbf{\textit{e}}_1 \text{ in } \textbf{\textit{e}}_2 \leadsto \Sigma', \pi', \text{let ref } \textbf{\textit{x}} = \textbf{\textit{e}}_1' \text{ in } \textbf{\textit{e}}_2}$$

$$\Sigma, \pi, \text{let ref } x = v \text{ in } e \leadsto \Sigma, \pi\{(x, \textit{Here}) \leftarrow v\}, e$$

Operational Semantics

$$\Sigma, \pi, e \leadsto \Sigma', \pi', e'$$

 π no longer contains just immutable variables

$$\frac{\Sigma, \pi, e_1 \leadsto \Sigma', \pi', e_1'}{\Sigma, \pi, \text{let ref } x = e_1 \text{ in } e_2 \leadsto \Sigma', \pi', \text{let ref } x = e_1' \text{ in } e_2}$$

$$\overline{\Sigma, \pi, \text{let ref } x = v \text{ in } e \leadsto \Sigma, \pi\{(x, \textit{Here}) \leftarrow v\}, e}$$

$$\frac{x \text{ local variable}}{\Sigma, \pi, x \lessdot v \leadsto \Sigma, \pi\{(x, \textit{Here}) \leftarrow v\}, e}$$

And labels too

Mutable Local Variables: WP rules

Rules are exactly the same as for global variables

$$\mathrm{WP}(\mathsf{let} \ \mathsf{ref} \ \mathit{X} = \mathit{e}_1 \ \mathsf{in} \ \mathit{e}_2, \mathit{Q}) = \mathrm{WP}(\mathit{e}_1, \mathrm{WP}(\mathit{e}_2, \mathit{Q})[\mathit{X} \leftarrow \mathsf{result}])$$

$$WP(x \leftarrow e, Q) = WP(e, Q[x \leftarrow result])$$

$$WP(L:e,Q) = WP(e,Q)[x@L \leftarrow x@Here \mid x \text{ any variable}]$$

Functions

Program structure:

```
prog ::= decl*
decl ::= vardecl | fundecl
vardecl ::= val ref id : basetype
```

Functions

Program structure:

Functions

Program structure:

Function definition:

- Contract:
 - pre-condition
 - post-condition (label Old available)
 - assigned variables: clause writes
- Body: expression

Example: isqrt

```
let isqrt(x:int): int
  requires x >= 0
  ensures result >= 0 /\
          sqr(result) \le x < sqr(result + 1)
body
  let ref res = 0 in
  let ref sum = 1 in
 while sum <= x do
    res <- res + 1;
    sum < -sum + 2 * res + 1
  done;
  res
```

Example using *Old* label

```
val ref res: int

let incr(x:int)
  requires true
  writes res
  ensures res = res@0ld + x
body
  res <- res + x</pre>
```

Typing

Definition *d* of function *f*:

```
let f(x_1 : \tau_1, ..., x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

Well-formed definitions:

$$\Gamma' = \{x_i : \tau_i \mid 1 \le i \le n\} \cdot \Gamma \qquad \vec{w} \subseteq \Gamma$$

$$\Gamma' \vdash Pre, Post : formula \qquad \Gamma' \vdash Body : \tau$$

$$\vec{w}_g \subseteq \vec{w} \text{ for each call } g \qquad y \in \vec{w} \text{ for each assign } y$$

$$\Gamma \vdash d : wf$$

where Γ contains the global declarations

Typing: function calls

```
let f(x_1 : \tau_1, ..., x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

Well-typed function calls:

$$\frac{\Gamma \vdash t_i : \tau_i}{\Gamma \vdash f(t_1, \ldots, t_n) : \tau}$$

Note: for simplicity the expressions t_i are assumed without side-effect (introduce extra let-expression if needed)

Operational Semantics of a Function Call

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

$$\frac{\pi = \{x_i \mapsto \llbracket t_i \rrbracket_{\Sigma,\pi}\} \qquad \Sigma, \pi \models \textit{Pre}}{\Sigma, \Pi, \textit{f}(t_1, \dots, t_n) \leadsto \Sigma, (\pi, \textit{Post}) \cdot \Pi, (\textit{Old} : \textit{Body})}$$

A *call frame* is a pair $(\pi, Post)$ of a local stack and a formula Π denotes a *stack of call frames*

Blocking Semantics

Execution blocks at call if pre-condition does not hold

Operational Semantics of returning from Function Call

We check that the *post-condition* holds at the end:

$$\frac{\Sigma, \pi \models \textit{Post}[\mathsf{result} \leftarrow \textit{v}]}{\Sigma, (\pi, \textit{Post}) \cdot \Pi, \textit{v} \leadsto \Sigma, \Pi, \textit{v}}$$

Blocking Semantics

Execution blocks at return if post-condition does not hold

WP Rule of Function Call

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{w}
ensures Post
body Body
```

$$WP(f(t_1,...,t_n),Q) = Pre[x_i \leftarrow t_i] \land \forall \vec{v}, (Post[x_i \leftarrow t_i, w_j \leftarrow v_j, w_j@Old \leftarrow w_j] \rightarrow Q[w_j \leftarrow v_j])$$

Modular Proof Methodology

When calling function f, only the contract of f is visible, not its body

Example: isqrt(42)

Exercise: prove that $\{true\}isqrt(42)\{result = 6\}$ holds

```
val isqrt(x:int): int
  requires x >= 0
  writes (nothing)
  ensures result >= 0 /\
      sqr(result) <= x < sqr(result + 1)</pre>
```

Abstraction of sub-programs

- Keyword val introduces a function with a contract but without body
- writes clause is mandatory in that case

Example: Incrementation

```
val ref res: int

val incr(x:int):unit
  writes res
ensures res = res@Old + x
```

Exercise: Prove that $\{res = 6\}incr(36)\{res = 42\}$ holds

Soundness Theorem for a Complete Program

Assuming that for each function defined as

```
let f(x_1 : \tau_1, \dots, x_n : \tau_n) : \tau
requires Pre
writes \vec{W}
ensures Post
body Body
```

we have

- ▶ variables assigned in *Body* belong to \vec{w} ,
- ▶ $\models Pre \rightarrow WP(Body, Post)[w_i@Old \leftarrow w_i]$ holds,

then for any formula Q, any expression e, any configuration (Σ, π) :

if
$$\Sigma, \pi \models WP(e, Q)$$
 then execution of Σ, π, e is *safe*

Remark: (mutually) recursive functions are allowed

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions

Advanced Modeling of Programs
(First-Order) Logic as a Modeling Language
Axiomatic Definitions

Programs on Arrays

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL

About Specification Languages

Specification languages:

- Algebraic Specifications: CASL, Larch
- Set theory: VDM, Z notation, Atelier B
- Higher-Order Logic: PVS, Isabelle/HOL, HOL4, Coq
- Object-Oriented: Eiffel, JML, OCL
- **.**..

Case of Why3, ACSL, Dafny: trade-off between

- expressiveness of specifications
- support by automated provers

Why3 Logic Language

- (First-order) logic, built-in arithmetic (integers and reals)
- Definitions à la ML
 - ▶ logic (i.e. pure) *functions, predicates*
 - structured types, pattern-matching (next lecture)
- ▶ type polymorphism à la ML
- higher-order logic as a built-in theory of functions
- Axiomatizations
- Inductive predicates (next lecture)

Important note

Logic functions and predicates are always totally defined

Definition of new Logic Symbols

Logic functions defined as

function
$$f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \tau = e$$

Predicate defined as

predicate
$$p(x_1 : \tau_1, \ldots, x_n : \tau_n) = e$$

where τ_i , τ are logic types (not references)

- No recursion allowed (yet)
- No side effects
- Defines total functions and predicates

Logic Symbols: Examples

```
function sqr(x:int) = x * x

predicate divides(x:int,y:int) =
    exists z:int. y = x * z

predicate is_prime(x:int) =
    x >= 2 /\
    forall y z:int. y >= 0 /\ z >= 0 /\ x = y*z ->
        y=1 \/ z=1
```

Definition of new logic types: Product Types

Tuples types are built-in:

```
type pair = (int, int)
```

Record types can be defined:

```
type point = { x:real; y:real }
```

Fields are immutable

We allow let with pattern, e.g.

```
let (a,b) = ... in ...
let { x = a; y = b } = ... in ...
```

Dot notation for records fields, e.g.

```
p.x + p.y
```

Function and predicate declarations of the form

```
function f(\tau, ..., \tau_n) : \tau predicate p(\tau, ..., \tau_n)
```

together with axioms

axiom id: formula

specify that f (resp. p) is any symbol satisfying the axioms

Example: division

```
function div(real, real): real
axiom mul_div:
  forall x,y. y<>0 -> div(x,y)*y = x
```

Example: division

```
function div(real, real): real
axiom mul_div:
  forall x,y. y<>0 -> div(x,y)*y = x
```

Example: factorial

```
function fact(int):int
axiom fact0:
  fact(0) = 1
axiom factn:
  forall n:int. n >= 1 -> fact(n) = n * fact(n-1)
```

Exercise: axiomatize the GCD

Functions/predicates are typically underspecified
 we can model partial functions in a logic of total functions

Functions/predicates are typically underspecified
 we can model partial functions in a logic of total functions

Warning about soundness

Axioms may introduce *inconsistencies*

```
function div(real,real):real
axiom mul_div: forall x,y. div(x,y)*y = x
implies 1 = div(1,0)*0 = 0
```

Underspecified Logic Functions and Run-time Errors

Error "Division by zero" can be modeled by an abstract function

```
val div_real(x:real,y:real):real
  requires y <> 0.0
  ensures result = div(x,y)
```

Reminder

Execution blocks when an invalid annotation is met

Outline

"Modern" Approach, Blocking Semantics

Syntax extensions

Advanced Modeling of Programs

Programs on Arrays

Higher-order logic as a built-in theory

- ▶ type of *maps* : $\tau_1 \rightarrow \tau_2$
- ▶ lambda-expressions: fun $x : \tau \rightarrow t$

Definition of selection function:

function select
$$(f: \alpha \rightarrow \beta)$$
 $(x: \alpha) : \beta = f x$

Definition of function update:

function store
$$(f: \alpha \to \beta)$$
 $(x: \alpha)$ $(v: \beta)$: $\alpha \to \beta$ = fun $(y: \alpha)$ -> if $x = y$ then v else f y

SMT (first-order) theory of "functional arrays"

```
lemma select_store_eq: forall f:\alpha -> \beta, x:\alpha, v:\beta. select(store(f,x,v),x) = v lemma select_store_neq: forall f:\alpha -> \beta, x y:\alpha, v:\beta. x <> y -> select(store(f,x,v),y) = select(f,j)
```

Arrays as Mutable Variables of type "Map"

- ightharpoonup Array variable: mutable variable of type int -> α
- In a program, the standard assignment operation

is interpreted as

```
val ref a: int -> int

let test()
  writes a
  ensures select(a,0) = 13  (* a[0] = 13 *)
body
  a <- store(a,0,13);  (* a[0] <- 13 *)
  a <- store(a,1,42)  (* a[1] <- 42 *)</pre>
```

Exercise: prove this program

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
= select(store(a, 0, 13), 0) = 13
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
= select(store(a, 0, 13), 0) = 13
= 13 = 13
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
= select(store(a, 0, 13), 0) = 13
= 13 = 13
= true
```

```
WP((a < store(a, 0, 13); a < store(a, 1, 42)), select(a, 0) = 13))
= WP(a < store(a, 0, 13), WP(a < store(a, 1, 42), select(a, 0) = 13)))
= WP(a < store(a, 0, 13); select(store(a, 1, 42), 0) = 13)
= select(store(store(a, 0, 13), 1, 42), 0) = 13
= select(store(a, 0, 13), 0) = 13
= 13 = 13
= true
```

Note how we use both lemmas select_store_eq and select_store_neq

Example: Swap

Permute the contents of cells *i* and *j* in an array *a*:

```
val ref a: int -> int
let swap(i:int,j:int)
  writes a
  ensures select(a,i) = select(a@0ld,j) /\
          select(a,j) = select(a@Old,i) /\
          forall k:int. k <> i / k <> j ->
            select(a,k) = select(a@Old,k)
body
  let tmp = select(a,i) in (* tmp < -a[i]*)
  a <- store(a,i,select(a,j)); (* a[i]<-a[i]*)
                      (* a[i]<-tmp *)
  a <- store(a,j,tmp)</pre>
```

Arrays as Variables of Type "length \times map"

- Goal: model "out-of-bounds" run-time errors
- ightharpoonup Array variable: mutable variable of type array lpha

```
type array 'a = { length : int; elts : int -> 'a}
val get (ref a:array 'a) (i:int) : 'a
  requires 0 <= i < a.length
  ensures result = select(a.elts,i)
val set (ref a:array 'a) (i:int) (v:'a) : unit
  requires 0 <= i < a.length
 writes
  ensures a.length = a@Old.length /\
           a.elts = store(a@Old.elts,i,v)
```

- a[i] interpreted as a call to get(a,i)
- a[i] <- v interpreted as a call to set(a,i,v)</p>

Example: Swap again

```
val ref a: array int
let swap(i:int,j:int)
  requires 0 \le i \le a.length / 0 \le j \le a.length
 writes a
  ensures select(a.elts,i) = select(a@0ld.elts,j) /\
         select(a.elts,j) = select(a@0ld.elts,i) /\
         forall k:int. 0 \le k < a.length / k <> i / k <> j ->
           select(a.elts,k) = select(a@Old.elts,k)
body
  let tmp = get(a,i) in (* tmp < -a[i]*)
  set(a,i,get(a,j)); (* a[i]<-a[j]*)
  set(a,j,tmp)
               (* a[j]<-tmp *)
```

Note about Arrays in Why3

```
use array.Array
syntax: a.length, a[i], a[i]<-v</pre>
```

Example: swap

```
val a: array int
let swap (i:int) (j:int)
  requires { 0 \le i \le a.length / \ 0 \le j \le a.length \}
  writes { a }
  ensures { a[i] = old \ a[j] /  a[j] = old \ a[i]}
  ensures { forall k:int.
                0 \le k \le a. length / k \iff i / k \iff j \implies
                a[k] = old a[k]
=
  let tmp = a[i] in a[i] <- a[j]; a[j] <- tmp
```

Exercises on Arrays

- Prove Swap by computing the WP
- Using WP, prove the program

```
let test()
  requires
    select(a,0) = 13 /\ select(a,1) = 42 /\
    select(a,2) = 64
  ensures
    select(a,0) = 64 /\ select(a,1) = 42 /\
    select(a,2) = 13
body
  swap(0,2)
```

Exercise on Arrays: incrementation

Specify, implement, and prove a program that increments by 1 all cells, between given indices i and j, of an array of reals

See file array_incr.mlw

Exercise: Search Algorithms

```
var a: array real

let search(n:int, v:real): int
  requires 0 <= n
  ensures { ? }
= ?</pre>
```

- 1. Formalize postcondition: if v occurs in a, between 0 and n-1, then result is an index where v occurs, otherwise result is set to -1
- 2. Implement and prove *linear search*:

```
res < -1; for each i from 0 to n-1: if a[i] = v then res < i; return res
```

See file lin_search.mlw

Home Work 4: Binary Search

```
low = 0; high = n - 1;
while low \le high:
let m be the middle of low and high
if a[m] = v then return m
if a[m] < v then continue search between m and high
if a[m] > v then continue search between low and m
```

See file bin_search.mlw

Home Work 5: "for" loops

Syntax: for $i = e_1$ to e_2 do e Typing:

- i visible only in e, and is immutable
- ▶ e₁ and e₂ must be of type int, e must be of type unit

Operational semantics:

(assuming e_1 and e_2 are values v_1 and v_2)

$$\frac{\textit{V}_1 > \textit{V}_2}{\Sigma, \pi, \text{for } \textit{i} = \textit{V}_1 \text{ to } \textit{V}_2 \text{ do } \textit{e} \!\rightsquigarrow\! \Sigma, \pi, ()}$$

$$v_1 \leq v_2$$

$$\Sigma, \pi, \text{for } i = \textit{V}_1 \text{ to } \textit{V}_2 \text{ do } \textit{e} \leadsto \Sigma, \pi, \ \, \begin{array}{l} (\text{let } \textit{i} = \textit{V}_1 \text{ in } \textit{e}); \\ (\text{for } \textit{i} = \textit{V}_1 + 1 \text{ to } \textit{V}_2 \text{ do } \textit{e}) \end{array}$$

Home Work: "for" loops

Propose a Hoare logic rule for the for loop:

$$\frac{\{?\}e\{?\}}{\{?\}\mathsf{for}\; i=\mathit{V}_1\;\mathsf{to}\;\mathit{V}_2\;\mathsf{do}\;e\{?\}}$$

Propose a rule for computing the WP:

$$\operatorname{WP}(\operatorname{for} i = V_1 \operatorname{to} V_2 \operatorname{invariant} I \operatorname{do} e, Q) = ?$$

That's all for today, Merry Christmas!

- Next lecture on January 4th
- Several home work exercises to do
- Project text will be given on January 4th