Separation Logic 1/4

Jean-Marie Madiot

Inria Paris

February 3, 2026

part 1/4 : some initial material from Arthur Charguéraud

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 1/85

Condensed history of separation logic

Floyd-Hoare Logic, or program logic, or axiomatic semantics

e Alan Turing (1949), Checking a large routine: first program proof

e Floyd, Hoare (1967-1969): current form of rules

@ fine for simple programs, tedious for pointer aliasing and concurrency
Separation Logic: assertions about fragments of memory/heap

@ Reynolds (2002): A Logic for Shared Mutable Data Structures

@ local reasoning, making it easy to reason about pointers
Concurrent Separation Logic (CSL)

@ Peter O'Hearn (2007): Resources, Concurrency and Local Reasoning

@ separation combined with critical sections for shared resources
The lIris framework (2015-2017)

@ Expressive and complex logic designed for CSL inside Rocq

@ Modalities, resources more general than memory, ghost state

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 2/85

Origins

@ Burstall (1972): reasoning on with no sharing
Distinct Nonrepeating List Systems

@ Reynolds (1999): separating conjunction
Intuitionistic Reasoning about Shared Mutable

@ O'Hearn and Pym (1999): linear resources
The Logic of Bunched Implications

e O’'Hearn, Reynolds, Yang (2001)
Local Reasoning about Programs that Alter Data Structures.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 3/85

Examples
Micro-controller
Assembly language
Operating system
C (drivers)

C-light (concurrent)
C11 (concurrent)
Java

Java

Javascript

ML

OCaml

SML

Rust

Time complexity
Multicore OCaml
Space complexity

Jean-Marie Madiot (Inria Paris)

Klein et al
Chlipala et al
Shao et al
Yang et al
Appel et al
Vafeiadis et al
Parkinson et al
Jacobs et al
Gardner et al
Morisset et al
Charguéraud
Myreen et al
Jung et al
Guéneau et al
Mével et al
Madiot et al

Separation Logic 1

NICTA

MIT

Yale

Oxford

Princeton

MPI and MSR
MSR and Cambridge
Leuven

Imperial College
Harvard

Inria

U. of Cambridge
MPI

Inria

Inria

Inria

February 3, 2026

Isabelle
Rocq
Rocq
Other
Rocq
Paper
Other
Verifast
Paper
Rocq
Rocq
HOL
Rocqg-Iris
Rocq
Rocqg-Iris
Rocg-Iris
Rocg-Iris

4/85

Interactive vs automated

Fully automated (e.g. Infer, Spacelnvader, Predator, MemCAD, SLAyer)
o find many bugs

@ don't find proofs

Semi-automated (Smallfoot, Heap Hop, VeriFast, Viper)
@ work well on some classes of programs
@ rely on user-provided invariants

@ hard to debug / understand failure

Interactive (Iris, VST, Ynot, CFML):
@ verified
@ easier to debug

@ expressive

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 5/85

Choice of the logic

Most research projects, including mine, define separation logic inside a
logic framework.

We will use Rocq (Coq) and more precisely Iris, which is fact a whole
proof mode inside Rocq.

Installation instructions can be found at
https://gitlab.mpi-sws.org/iris/tutorial-popl20

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 6/85

https://gitlab.mpi-sws.org/iris/tutorial-popl20

Differences with previous years
https://gitlab.mpi-sws.org/iris/tutorial-popl20

2-3 years ago and before, CFML:

typed ML-langage
termination

tools to accomodate ocaml

This year: lIris, with its toy langage

prolific research
concurrent programs
expressive

no types (in this course)

no termination (in this course)

In the beginning we use a much simpler model
Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

7/85

Chapter 1

Separation Logic Operators

Jean-Marie Madiot (Inria Paris) Separation Logic 1

The heap, in programming

“The heap”
@ = the dynamically-allocated memory
@ malloc in C, new in some object-oriented languages,

@ sometimes implicit, especially in langages with garbage collection such
as Python, Javascript, OCaml

@ contains most things (not local variables, which are on the stack)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 9/85

The heap, formally

Definition
A partial map, or partial function, from a set X to a set Y is a subset F
of X x Y that is functional: Yxy1y2 (x,y1) € F A (x,y2) € F = y1 = ya.

Definition
A subheap, or heaplet, or just heap, is a finite map from locations (=
memory adresses) to values.

Examples, with locations = values = N:
e {(1,2),(2,3)} and & are heaps,
e {(2,1),(2,3)} is not a heap.

Joining
When dom(hi) n dom(he) = & we write hy w hg for hy U ho.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 10 /85

Heap predicates

A heap predicate H is a predicate on heaps.
i.e. if his a heap then H h is a proposition.

In Rocq: H : heap — Prop where Prop is the type of propositions.

Primitive heap predicates:

r

empty heap

‘P pure fact

[— v singleton heap

H x H' separating conjunction

dzr, H existential quantification

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

11/85

Empty heap and pure facts

Definition:

m.m=g AP
r E rTrue1

Example: specification of “let a = 3 and b = a+1".

r

Before:
After: "‘a=3 A b=4"

Note: a and b are program variables and a and b are logical variables. In
reality a will be replaced by 3 in the rest of the program, or kept in an
environment, but it is convenient to name it a in proofs.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 12/85

Singleton heap

Definition:
l—>v = dm. m={({,0)} Al#null

Example: specification of “let r = ref 3".

Before:
After: r—3

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

13/85

Singleton heap

Definition:
l—>v = dm. m={({,0)} Al#null

Example: specification of “let r = ref 3".

Before:
After: r—3

Example: specification of “incr s”.

Before: s—n for some n
After: s— (n+1)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

13/85

Separating conjunction

The heap predicate H; * Hs characterizes a heap made of two disjoint
parts, one that satisfies H; and one that satisfies Ho.

Example: (r — 3) * (s — 4) describes two distinct reference cells.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 14 /85

Separating conjunction

The heap predicate H; * Hs characterizes a heap made of two disjoint
parts, one that satisfies H; and one that satisfies Ho.

Example: (r — 3) * (s — 4) describes two distinct reference cells.

Definition:
my L mo
m=mi1Ymy
Hl * HQ = Am. Elmlmg.
Hymy
Hymo
where:
my L mg = dommi ndommy =
miwmsg = M UmMmo when m; L mo

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 14 /85

Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

ra FO=1'I
T=1" MT=1"+«0=1"
12 I-2)x1=1
(1—2)#(L—3) (1—2)* (2o 1)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 15/85

Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

o %) =1 impossible
1=1 %) MT=1"=*"0=1 impossible
12 1>2)+1=1

(1—2)x(1—3)

(1—2)%(2—1)

Jean-Marie Madiot (Inria Paris)

Separation Logic 1

February 3, 2026

15/85

Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

o %) =1 impossible
1=1 %) MT=1"=*"0=1 impossible
12 (1L2)] | A=2)+1=1] {@12)]

(1 2)% (1~ 3) |impossible | (1—2)=*(2—1) | {(1,2),(2,1)}

Jean-Marie Madiot (Inria Paris)

Separation Logic 1

February 3, 2026

15/85

Heaps and heap predicates

Exercise:
@ specify: let r = ref 5 and s = ref 3 and t = r.
@ specify the state after subsequently executing: incr r.
© specify the state after subsequently executing: incr t.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 16 / 85

Heaps and heap predicates

Exercise:
© specify: let r = ref 5 and s = ref 3 and t

@ specify the state after subsequently executing: incr r.
© specify the state after subsequently executing: incr t.

Incorrect answer: (r — 5) * (s — 3) * (t — 5).

=TI.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

16 /85

Heaps and heap predicates

Exercise:

© specify: let r = ref 5 and s = ref 3 and t

@ specify the state after subsequently executing: incr r.
© specify the state after subsequently executing: incr t.

Incorrect answer: (r — 5) * (s — 3) * (t — 5).

Correct answer:

QO (r—5)=(s—3)="t=r
Q@ (r—6)x(s—3)="t=r
Q@ (roT)x(s—3)x"t=r

Jean-Marie Madiot (Inria Paris) Separation Logic 1

February 3, 2026

16 /85

Record fields

Heap predicate describing the field f of a record at address p:
pf—v = (p+offset of f)— v

Example:

\hd tl p—x * p_l,_l,_,p/

sometimes written
phd—z = ptl—yp

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

17/85

Representation of list cells

p—(z,p) = poax (p+1)—yp

In general
pr— (Vo,...,Up) = Py % ... % (p+n)— o,
Sometimes, to specify the names of the field, we write:

p~{hd=z; tl=p'} = phd—2z = ptl—yp

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

18/85

Existential quantification

Definition:
dx.H = XMn.dz. Hm
Compare:
(3z.P) : Prop when (P : Prop)

(3x. H) : heap — Prop when (H : heap — Prop)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

19/85

Existential quantification

Exercise: give heaps satisfying the following heap predicates

dz. (1 — z)’ Az. (11— 2)* (2— x) Iz z=x+1
. (z—ax+1)*(z+1— 2) Jz. 1z
Az. (z— 1) * (z — 2) iP."'P' iH. H

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 20/85

Existential quantification

Exercise: give heaps satisfying the following heap predicates

dz. (1 — z)’ Az. (11— 2)* (2— x) Jz. z=z+1"
nonsense {(1,7),(2,7)} impossible
. (z—ax+1)*(z+1— 2) Jx.1— 2
{(1,2),(2,1)} {(1,2)}
Az. (z— 1) * (z — 2) iP."'P' iH. H
impossible [0} any heap

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 20/85

Summary

r
I'P'I

l—wv

Hl*HQ

dx. H

Jean-Marie Madiot (Inria Paris)

True’

Am.

m

Am

m

.m = {(l,v)} Al #null

. Elmlmz.

.dx. Hm

Separation Logic 1

m=g A P

mi1 L mo

m =mi1 v msm

Hymy
Hymeo

February 3, 2026

21/85

Chapter 2

Representation Predicate for Lists

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Linked lists

Example of an assertion about a linked list containing [8; 5; 6]

p— (8,p1) * p1— (5,p2) * pa— (6,null)

@p @p, @p,

Lele] [=]w] [

null

We want it to work for any intermediate pointers, so we write instead:

pi. p— (8,p1) * Ipa. p1— (5,p2) * p2 — (6,null)

p

N\
DEROESDL

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 23/85

Representation predicate for lists

Where L is a “logical” list (e.g. a Rocq list), we write:

p ~» MList L = match L with
|nil = "p=null’
|z L = . p—(x,p)« p/ ~ MList L/

T e T L 3

Note: p ~» MList L is notation for MList L p.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 24 /85

Implementation of mutable lists in OCaml

Mutable lists (C-style), expressed in OCaml extended with null pointers.

type ’a cell = { mutable hd : ’a;
mutable tl : ’a cell }

p

N\
DEROESDT

The we write just:
{hd=8; t1={hd=5; t1={hd=26; t1 = null } } }

but behind, there are 3 allocations and 6 assignments

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

25/85

Separation properties

p1 ~ MList L1 % pg ~ MList Ly % p3 ~» MList Lg

Separation enforces: no cycles, and no sharing.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 26 /85

Union heap predicate

p ~ MList L

Equivalent to:

p ~ MList L

where:

= match Lwith
|nil = "p=null’
|z L = Ip'.p— (x,p') * p' ~ MList L'

= "L=nil A p=null
v (JzL'p. 'L=x:=L"
« pr> (x,p') * p' ~ MList L')

HivHy = Mn Hmv Hm

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

27/85

List construction

let rec build n v =
if n = 0 then null else
let p’ = build (n-1) v in
{hd =v; tl =p’ }

Jean-Marie Madiot (Inria Paris) Separation Logic 1

List construction

let rec build n v =
if n = 0 then null else
let p’ = build (n-1) v in
{hd =v; tl =p’ }

Pre-condition:

Post-condition, where p denotes the result:

AL. p~» MList L * ‘lengthL =n A (Vi.0<i<n= L[i] =v)’

Jean-Marie Madiot (Inria Paris) Separation Logic 1

February 3, 2026

28 /85

List construction: proof (1/2)

AL. p~> MList L = “lengthL =n A (Vi.0<i<n= L[i] =v)’

Case n = 0. We have p = null. We take L = nil.

To produce p ~» MList L, we need to produce null ~» MList nil.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

29 /85

List construction: proof (1/2)

AL. p~> MList L = “lengthL =n A (Vi.0<i<n= L[i] =v)’

Case n = 0. We have p = null. We take L = nil.
To produce p ~» MList L, we need to produce null ~» MList nil. We use:

(null ~~ MListnil) = "'

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 29/85

List construction: proof (2/2)

AL. p~ MListL % ‘lengthL =n A (Vi.0<i<n= L[i] =v)’

Case n > 0. By IH, we have: p’ ~ MList L/, with L’ of length n — 1.
To produce p ~» MList L, we have p’ ~» MList L' and p — (v, p’).

p p’

T e [T3 T3]

(3. p— (v,p') * p' ~ MListL') = p~» MList (v :: L)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

30/85

In-place list reversal: code

let reverse pO =
let r = ref pO in
let s = ref null in
while !r <> null do
let p = !r in

r := p.tl;
p-tl <- Is;
s = p;
done;
I's

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 31/85

In-place list reversal: code

let reverse pO =
let r = ref pO in
let s = ref null in
while !r <> null do
let p = !r in

r := p.tl;
p-tl <- Is;
s = p;
done;
I's
Exercise:

@ Specify the state before the loop.
@ Specify the state after the loop.
© Specify the loop invariant.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

31/85

In-place list reversal: invariants

Before the loop:

Jean-Marie Madiot (Inria Paris) Separation Logic 1

In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

Jean-Marie Madiot (Inria Paris) Separation Logic 1

In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

Jean-Marie Madiot (Inria Paris) Separation Logic 1

In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

dg. r — null * s+— g % g~ MList (rev L)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 32/85

In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

dg. r — null * s+— g % g~ MList (rev L)

Loop invariant:

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 32/85

In-place list reversal: invariants
Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

dg. r — null * s+— g % g~ MList (rev L)

Loop invariant:

dpgLiLy. 1T~ p % p~> MList Lo
* §+— q * g~ MList L1
* 'L=revLi+H Ly

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

32/85

In-place list reversal: proof (1/2)

Invariant:
dpgLiLa. r—>p * s—q

p~> MList Ly % g ~> MList Ly
* [= rev Ly —H—ng

Initial state implies the invariant: take p = pg and L1 = nil and Lo = L.

r+— po * po ~» MList L % s+ null % null ~ MListnil * "L = revnil+L’

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 33/85

In-place list reversal: proof (1/2)

Invariant:
dpgLiLa. r—>p x s+ q

#x p~> MList Ly % g ~» MList Ly
* "L =revLi4+Lo'

Initial state implies the invariant: take p = pg and L1 = nil and Lo = L.

r+— po * po ~» MList L % s+ null % null ~ MListnil * "L = revnil+L’

Invariant implies the final state: exploit p = null.

r +— null % null ~ MList Ly * s+ q * g~ MList Ly * "L = rev L1+Lo'

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 33/85

In-place list reversal: proof (1/2)

Invariant:
dpgLiLa. r—>p x s+ q

#x p~> MList Ly % g ~» MList Ly
* "L =revLi4+Lo'

Initial state implies the invariant: take p = pg and L1 = nil and Lo = L.

r+— po * po ~» MList L % s+ null % null ~ MListnil * "L = revnil+L’

Invariant implies the final state: exploit p = null.
r +— null % null ~ MList Ly * s+ q * g~ MList Ly * "L = rev L1+Lo'
Derive Lo = nil using:

(null ~» MList L) = "L = nil’

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 33/85

Conversion rule for empty lists

p~ MList L = match L with

[nil = "p=null’

|z L' = . p (x,p") % p ~ MList L’

Let us prove: (null ~ MList L) = "L = nil’

— From right to left: we may assume L = nil, thus:

‘nil = nil" = "' = (null ~ MListnil)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 34/85

Conversion rule for empty lists

p~> MList L = match L with
[nil = "p=null’
|z L' = . p (x,p") % p ~ MList L’
Let us prove: (null ~» MList L) = "L = nil’

— From right to left: we may assume L = nil, thus:

‘nil = nil" = "' = (null ~ MListnil)

— From left to right: if L = nil, then easy; otherwise L = z :: L’ and:
null ~ MList (z :: L') = (3p. null — (z,p’) = p’ ~» MList L")

contradicts the fact that no data can be allocated at the null address.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

34/85

In-place list reversal: proof (2/2)

Transition when p # null:

p~ MList Ly * ¢ ~» MList L1 * "L = rev L+ Lo’
to
AxLlp’. Lo =x: Ly = p— (z,p) = p’ ~ MList L
% g~ MList Ly « "L =rev L+ Ly

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 35/85

In-place list reversal: proof (2/2)

Transition when p # null:

p~ MList Ly * ¢ ~» MList L1 * "L = rev L+ Lo’
to
xLlop’. Lo =x Ly + prs (x,p) * p' ~» MList Lj
% g~ MList Ly « "L =rev L+ Ly

After update of p.tl to the value ¢:

p ~ {{hd=z; tI=¢q[} * ¢ ~~ MList L,
p/ ~» MList L "L = rev Ly +(x :: L))’
to
g~ MList (z :: L1) * p/ ~> MList L, % "L = rev (z :: L1) -+ Lg’

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 35/85

Conversion rules for nonempty lists

p~» MList L = match Lwith
|nil = "p=null’
|z L = . p—(z,p)
* p/ ~» MList L’

p~ MListL = 'p#null' = 3JzL’p. ‘L=z:L"

* pr (z,p)
* p/ ~» MList L/

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Summary

p ~+ MList L = match L with
|nil = "p=null’
|z L' = Ap'. p—(z,p)
x p/ ~» MList L/

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Break!

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Chapter 3

Representation Predicate for List Segments

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Length of a mutable list using a while loop

let rec mlength (p:’a cell) =

let £ = ref p in
let t = ref 0 in
while !f != null do
incr t;
f = ('f).t1;
done;
It
Exercise:

© Specify the state before the loop.

@ Specify the state after the loop.

© Draw a picture describing a state during the loop.
@ Try to state a loop invariant. What do you need?

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 40/85

Mlength: initial and final states

Before the loop:
(p~» MList L) = (f = p) * (t—0)

After the loop:
(p ~ MList L) = (f — null) = (¢ +— length L)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 41/85

Mlength: loop invariant

—fa] o —{z]

\

AL T THL A A I T

Ly Lo

Loop invariant:

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Mlength: loop invariant

1__{;J t——+II
AL T THL A A I T

Ly Lo

Loop invariant:

AL, Log. '"L=Li+HLy * (t—lengthLy) = (f — q)
(p~> MlistSegq L1) * (q ~» MList Ly)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

42/85

Representation predicate for list segments

p ~> MList L = match L with
|nil = "p=null’
|z L' = . p— (z,p)
x p' ~ MList L/

S EENERNT

Exercise: generalize MList to define p ~> MlistSeg g L., where L denotes
the list of items in the list segment from p (inclusive) to ¢ (exclusive).

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 43/85

Representation predicate for list segments

p ~> MList L = match L with
|nil = "p=null’
|z L' = . p— (z,p)
x p/ ~ MList L’

S EENERNT

Exercise: generalize MList to define p ~> MlistSeg g L., where L denotes
the list of items in the list segment from p (inclusive) to ¢ (exclusive).

p ~ MlistSegq . = match L with
Inil = p=¢
|z L' = . p— (z,9)
o ’ x p' ~ MlistSeg ¢ L’
emark:
p~> MList L = p ~» MlistSegnull L

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 43/85

Mlength: proof
T_.IE\’ 1_.|E|
AL T T A 3o 3 T

Ly Lo

Enter: Li=nlALy=LAg=p

ra

= (p ~» MlistSeg p nil)

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Mlength: proof
T_.IE\’ 1_.|E|
AL T T A 3o 3 T

Ly Lo

Enter: Li=nlALy=LAg=p

ra

= (p ~» MlistSeg p nil)

Exit: Li=L A Ly=nil A ¢g=null
(p ~» MlistSegnull L) = (p ~» MList L)

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Mlength: proof
T_.IE\’ 1_.|E|
AL T T A 3o 3 T

L, L,
Enter: Li=nlAL=LAqg=p
"' = (p ~ MlistSeg pnil)
Exit: Li=L A Ly=nil A ¢g=null
(p ~» MlistSegnull L) = (p ~» MList L)
Step: Lo=x LY A g#null A gtl=¢

dq. p ~ MlistSegq L1 * q ~ {{hd=x; tI=¢'|}
= p~ MlistSegq' (L1 +x :: nil)

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Splitting rules for list segments

< /

p ~ MlistSegq (z :: L) = Ip'. p— (z,p') = p' ~ MlistSegq L’

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Splitting rules for list segments

e
"”*tz*”c:a%m’“ 1

p ~ MlistSegq (z :: L) = Ip'. p— (z,p') = p' ~ MlistSegq L’

l’n

E‘_?r“)f i) d B s N B W ey

p ~» MlistSeg q (L +|-L2) = 3p'. p~ MlistSegp’' Ly
x p ~» MlistSegq Lo

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 45/85

An implementation of mutable queues

p \ front back

‘xl ?

EpCEROESOENE
We implement a queue with two pointers to the front and back of the

same list segment, with the last cell storing dummy values allowing for less
branching (simpler and slightly faster)

type ’a queue = { mutable front : ’a cell;
mutable back : ’a cell; }

Exercise: define the representation predicate p ~ Queue L.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 46 /85

An implementation of mutable queues

p \ front back

Xy

R OESOESDERE

We implement a queue with two pointers to the front and back of the
same list segment, with the last cell storing dummy values allowing for less
branching (simpler and slightly faster)

?

type ’a queue = { mutable front : ’a cell;
mutable back : ’a cell; }

Exercise: define the representation predicate p ~ Queue L.
p~ QueveL = 3fb. pw— (f,b) = f~> MlistSegbL = b— (_,_)

Alternative for the last cell: Jyq. b — (y,q)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 46 /85

Summary

p ~» MlistSegq L = match L with
Inil = 'p=¢
|z L' = . p— (z,7)
x p ~» MlistSeg q L’

Split and merge of segments:

p~ MlistSegq (L1+Ls) = 3p'. p~ MlistSegp’ Ly
x p ~» MlistSegq Lo

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

47/85

Chapter 4

Representation Predicate for Trees

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Implementation of a mutable binary trees

null

| 6 | null

Empty trees represented as null pointers. Nodes represented as records.

type node = {
mutable item : int;
mutable left : node;
mutable right : node; }

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

49 /85

Logical binary trees

Inductive tree : Type (=
| Leaf : tree
| Node : int — tree — tree — tree.

Example:

Node 3
(Node 2 Leaf Leaf) e

(Node 4 (Node 5 Leaf Leaf) 0 °

(Node 6 Leaf Leaf))

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 50/85

Representation predicate for binary trees

T o
(T
N

E Lo

E

null [null

null | null null | null

Representation predicate:

p ~> Mtree T

February 3, 2026 51/85

Representation predicate for binary trees

p~+ MList L = match L with
|nil = "p=null’
|z L = . p—(x,p)
x p ~» MList L/

Exercise: define p ~» MtreeT.

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Representation predicate for binary trees

p~+ MList L = match L with
|nil = "p=null’
|z L = . p—(x,p)
* p/ ~» MList L’

Exercise: define p ~ MtreeT.

p ~» MtreeT = matchT with
| Leaf = "p = null’
|NodezT7 T = Ipipo.
p— (2,p1,p2)
* pp ~> Mtree T}
x po ~> MtreeTs

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 52/85

Complete binary tree

p ~» MtreeDepthnT

describes a complete binary tree whose leaves are all at depth n.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 53/85

Complete binary tree (1/2)

p ~» MtreeT" = match T with
|Leaf = "p = null’
|Nodez T To = Ipipo.
p— (2,p1,p2)
x pp ~ MtreeT}
x po ~» Mtree'ls

Exercise: define p ~» MtreeDepth nT" by modifying p ~» MtreeT'.

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Complete binary tree (1/2), solution

p ~» MtreeDepthnT" = match T with
|Leaf = p=null A n=0"
|[NodezT1 T = Ipipe. 'n>0" =
p— (2,p1,p2)
p1 ~» MtreeDepth (n — 1) T}
% pg ~> MtreeDepth (n — 1) T

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 55/85

Complete binary tree (1/2), solution

p ~» MtreeDepthnT" = match T with
|Leaf = p=null A n=0"
|[NodezT1 T = Ipipe. 'n>0" =
p = (z,p1,p2)

p1 ~» MtreeDepth (n — 1) T}
% pg ~> MtreeDepth (n — 1) T

p ~» MtreeDepthnT = matchn, T with
|O, Leaf = "p = null’
\Sm, NodexT1 T2 = Eﬂplpg.

p— (z,p1,p2)
% p1 ~» MtreeDepthm T}
% pg ~> MtreeDepth m 15

| .,_ = "False’

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

55 /85

Complete binary tree (2/2)

Exercise: give an alternative definition of “p ~» MtreeDepthnT", this
time by reusing the definition of p ~» Mtree T without modification.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 56 /85

Complete binary tree (2/2)

Exercise: give an alternative definition of “p ~» MtreeDepthnT", this
time by reusing the definition of p ~» Mtree T without modification.

p ~ MtreeDepthnT = p~» MtreeT * "depthnT"

Inductive depth : int — tree — Prop =
| depth_leaf :
depth O Leaf
| depth_node : Vn x T1 T2,
depthn T1 —
depthn T2 —
depth (n+1) (Node x T1 T2).

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 56 /85

Complete binary tree of unspecified depth

p ~> MtreeDepthnT = (p ~» MtreeT) * "depthnT"

Exercise: define a predicate p ~~ MtreeCompleteT" for describing a
mutable complete binary tree, of some unspecified depth.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

57/85

Complete binary tree of unspecified depth

p ~> MtreeDepthnT = (p ~» MtreeT) * "depthnT"
Exercise: define a predicate p ~~ MtreeCompleteT" for describing a
mutable complete binary tree, of some unspecified depth.

Equivalent definitions for p ~~ MtreeComplete T"

Q@ dn. p ~» MtreeDepthn T
@ 3dn. (p~> MtreeT) * "depthnT"
Q@ (p~ MtreeT) * "In.depthnT"

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

57/85

Binary search tree property

JEaY
AA

The proposition searchT' E asserts that the pure tree T' describes a valid
search tree and that E describes the set integers that it contains.

Inductive search : tree — set int —Prop =
| search_leaf :
search Leaf (J
| search_node : Vx T1 T2,
search T1 E1 —
search T2 E2 —
foreach (is_1t x) E1 —
foreach (is_gt x) E2 —
search (Node x T1 T2) ({x} UE1l UE2).

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 58 /85

Binary search tree predicate

Exercise: define a predicate p ~» MsearchTree E for describing a mutable
binary search tree storing the set of elements E.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 59 /85

Binary search tree predicate

Exercise: define a predicate p ~» MsearchTree E for describing a mutable
binary search tree storing the set of elements E.

p ~ MsearchTree E = 3T. p ~ MtreeT = 'searchT E'

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 59 /85

Binary search tree predicate

Exercise: define a predicate p ~» MsearchTree E for describing a mutable
binary search tree storing the set of elements E.

p ~ MsearchTree E = 3T. p ~ MtreeT = 'searchT E'

For example, a call “add x p" can be specified as follows:
@ pre-condition: p ~» MsearchTree E

@ post-condition: p ~» MsearchTree (E U {z})

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 59 /85

Summary

Common representation predicate for all binary trees:

p ~> MtreeT = matchT with
| Leaf = "p = null’
[Nodex Th To = Ipipo.

p+— (2,p1,p2)
% p1 ~> MtreeT] * pg ~~ MtreeTs

Invariants are expressed on the pure trees:

p ~ MsearchTree E = 3T. p ~ MtreeT = 'searchT E'

Operations are specified in terms of the model. For example, add x p

changes p ~» MsearchTree E into p ~» MsearchTree (E U {z}).

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

60 /85

Chapter 5

Structures with sharing

Jean-Marie Madiot (Inria Paris) Separation Logic 1

The union-find data structure

938 mg

::f"Ei’
GRals .

\
&
A

type node = node ref

Implements an equivalence relation S of type: loc — loc — Prop.

Sab < a and b are two valid nodes with the same root

Remark: S aa holds iff a is the location of an existing node.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

62/85

Representation of union-find cells

QFE R
3@ r (.
@P P &
g gg\ (D)

P1—q1) * (P2—q2) * ... % (Pn— qn)
= ®(pi7qi)EG (pi — Qi)

where G is a finite map from locations to locations.

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Invariants of union-find
[@ [+]

) W

iy yl

Predicate “root Gar" asserts that in the graph GG, node a has root 7.

Inductive root : fmap loc loc — loc —loc — Prop :=
| root_init : VG x,
binds G x null —
root G x x
| root_step: VG x y r,
binds Gxy —
y #null —
rootGyr —
root Gxr.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 64 /85

Specification of the union-find structure

m@@ B{FJJZ
RYe
EZJM

A
g L_é [gw

(=) (D)

UnionFindS = 3G. (@(p’q)eG p—q)
* 'VYaedom@G. Ir. rootGar'
* 'Yab. Sab < Ir. rootGar A rootGbr’

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Specification of the union-find structure

RER | E R

W
\ AN S
[JB NN T
3 J_\EJX/”

Q‘P vv\

UnionFindS = 3G. (@)(p’q)eG p—q)
* 'VYa e domG@G. Ir. rootGar’

* 'Yab. Sab < 3Ir.rootGar A rootGbr'

is_equiv a b" is specified as follows:

For example, “let x
@ pre-condition: "Saa A Sbb' * UnionFind S

@ post-condition: "z = true <& Sab' * UnionFind S

Separation Logic 1 February 3, 2026

Jean-Marie Madiot (Inria Paris)

65 /85

Summary

Iterated separating conjunction, written (0.

For Union-Find:

® p—gq

(p,9)eG

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Chapter 6

Separation Logic Triples

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Separation Logic triples
A term t is specified using a Separation Logic triple of the form:

(HYt {\z. H}

@ H describes the initial heap
@ t is the term being specified
@ x is a name for the value produced by ¢

@ H' describes the final heap and the output value x.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

68 /85

Separation Logic triples
A term t is specified using a Separation Logic triple of the form:

(H} t [\ H')

H describes the initial heap
t is the term being specified

x is a name for the value produced by ¢

H' describes the final heap and the output value z.

{H}t{Q}

H (pre-condition) is a predicate of type: heap — Prop

t has an ML type interpreted in the logic as type A

Q (post-condition) is a predicate of type: A — heap — Prop.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 68 /85

Examples of triples

Example 1: o
{""} (ref 3) {Mr. r— 3}

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Examples of triples

Example 1: o
{""} (ref 3) {Mr. r— 3}

Example 2: (7} (3) D w = 37

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Examples of triples

Example 1:
xame {71 (ret 3) {Ar. 1 3}
Example 2: o . |
{7y (3) { .z =3"}
Example 3:

{r—3}('r) {Az. ‘x=3"%(r—3)}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 69 /85

Examples of triples

Example 1:
{""} (ref 3) {\r. r — 3}
Example 2: o . |
{""}(3) {A\x.z=3"}
Example 3: . §
{r—3}('r) {Az. ‘x=3"%(r—3)}
Example 4:

{r — 3} (incr r) {A_. (r — 4)}

Remark: in “A_. (r — 4)" we do not care about the return value.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

69 /85

Specification of functions

A function f is specified using a triple of the form:

Va. {H} (fa){\x.H'}

H is the pre-condition
f is the function
a is the value of the argument

2 is a name for the return value

H' is the post-condition

Example:
Vrn. {r+—n} (incr r) {A\.. r— (n+ 1)}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 70/85

Specification of operations on memory cells

Exercise: specify the primitive operations on references.

(ref v)

(1z)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

71/85

Specification of operations on memory cells

Exercise: specify the primitive operations on references.

(ref v)

(1z)

Solution: Yo. {7} (ref v) {Ar. (r —)}

Vrv. {r—v} (tr) {Az. "z =0"* (r—v)}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

71/85

Specification of operations on memory cells

Exercise: specify the primitive operations on references.

(ref v)

(1z)

Solution: Yo. {7} (ref v) {Ar. (r —)}

Vrv. {r—v} (tr) {Az. "z =0"* (r—v)}

Vrow. {r—w}(r :=v){A.(r—0v)}
Vro. {Jw. r—w} (r := v) {A.(r—o)}
Vro. {fr—-}(r :=v){A.(r—wv)}

where (1 — -) = Jw. r — w.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

71/85

Specification of partial functions

Presentation 1:

Vn. {'n>=0"} (factn) {A\z. "z = n!"}

Presentation 2:

Vn.n =0 = {""} (factn) {\z. "z = n!"}

distinguish:
fact n: the program called with argument n

n!: the mathematical quantity

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 72/85

Specification of operations on arrays

Exercise: specify operations on arrays in terms of p ~» Array L
(assuming Array is already defined).

Notation:
Lli]
L[i:=v]
L]
7€ dom L

Jean-Marie Madiot (Inria Paris)

Array.get p i)

(
Array.set iv
(Array.set p i v)
(Array.length p)
(

Array.create n v)

i-th element of the list L
= copy of L with v at index ¢
= length of L

= 0K i<i|L|

Separation Logic 1 February 3, 2026

73/85

Specification of operations on arrays

ViLp iedomL = {p~ Array L}
(Array.get P i)
{Mz. "z = L[i]" = p~> Array L}

ViLp iedomL = {p~ Array L}
(Array.set p i v)
{A_. p~ Array (L[i := v])}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

74 /85

Specification of operations on arrays

ViLp iedomL = {p~ Array L}
(Array.get P i)
{Mz. "z = L[i]" = p~> Array L}

ViLp iedomL = {p~ Array L}
(Array.set p i v)
{A_. p~ Array (L[i := v])}

VpL {p ~ Array L}
(Array.length p)
{An. 'n=|L|" = p~ Array L}

Voo n=0 = {'}
(Array.create n v)
{Ap. IL. (p ~» Array L) = "|L| = n'
% 'ViedomL. L[i] =v'}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 74 /85

Interpretation of triples (1/3)

Assume for now that triples describe the entire state.
A triple {H} t {\xz. H'} is interpreted in total correctness as:
Vm. Hm = Jv.3Im’. <t,m>| <v,m'> A ([x —»v]H)m'

(assuming a deterministic semantics)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 75/85

Interpretation of triples (1/3)

Assume for now that triples describe the entire state.
A triple {H} t {\xz. H'} is interpreted in total correctness as:
Vm. Hm = Jv.3Im’. <t,m>| <v,m'> A ([x —»v]H)m'

(assuming a deterministic semantics)

How is a triple {H} t {Q} interpreted?

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 75/85

Interpretation of triples (1/3)

Assume for now that triples describe the entire state.
A triple {H} t {\xz. H'} is interpreted in total correctness as:
Vm. Hm = Jv.3Im’. <t,m>| <v,m'> A ([x —»v]H)m'
(assuming a deterministic semantics)
How is a triple {H} t {Q} interpreted?
Let @ = \x. H'. We have Qv = [x — v] H'. Thus, the interpretation is:

VYm. Hm = Jv.3m’. <t,m>| <v,m'> A Qum/

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 75/85

Interpretation of triples (2/3)

In Separation Logic, a triple describes only a part m; of the heap.
The rest of the heap, call it mso, is assumed to remain unchanged.

Recall that:
mi; L mg = (domm; ndommsg =)

How is a triple {H} t {Q} interpreted?

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

76 /85

Interpretation of triples (2/3)

In Separation Logic, a triple describes only a part m; of the heap.
The rest of the heap, call it mso, is assumed to remain unchanged.

Recall that:
eca 2 mi; L mg = (domm; ndommsg =)

How is a triple {H} t {Q} interpreted?

<t,m1 wmo> | <v,m}| wmo>
Hmy ,
Ymqi ma. = Jv.Im]. Qumj
m1 L mo ,
my L mo

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 76 /85

Function with garbage collection

What is the natural specification of function myref?

let myref x =
let r = ref x in
let s = ref r in
r

What is missing from our current interpretation of triple?

Jean-Marie Madiot (Inria Paris) Separation Logic 1

February 3, 2026

77/85

Function with garbage collection

What is the natural specification of function myref?

let myref x =
let r = ref x in
let s
r

ref r in

What is missing from our current interpretation of triple?

From:

{""} (myref x) {Ar. r—x % ds.s — 1}
To:

{""} (myref x) {\r. r— x}

We need the post-condition to describe only a subset of the output heap.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 77/85

Interpretation of triples (3/3)

Let mg3 describe the garbage heap, that is, the part of the final heap that
corresponds either to cells from m or to cells allocated during the
evaluation of ¢, and that are not described by the post-condition.

We interpret a triple {H} t {Q} as:

<t,mi wmg> | <v,m} wme wms>

Hmy / /

Ymq ms. = Juvmims{ Qumj
ma 1 mo ,

my L ma L mg

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 78 /85

Interpretation of triples (3/3), revisited

We introduce a new heap predicate, written GC, that holds of any heap.
GC = dH. H

(sometimes just called True, because it is equivalent to Am.True, but it
looks too much like "True'.)

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 79/85

Interpretation of triples (3/3), revisited

We introduce a new heap predicate, written GC, that holds of any heap.
GC = dH. H
(sometimes just called True, because it is equivalent to Am.True, but it

looks too much like "True'.)

Definition (Separation Logic Triple)
We define {H} ¢t {Q} as:
VH'm. (H =+« H)m = 3Jom’. <t,m> || <v,m'> A (Quv = H' « GC)m/

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 79/85

Summary

Separation Logic triple:
{H} t {\z. H"}

Specification of a function:

Va.V.... {H} (fa){\z.H'}

Specification of primitive functions:

Vo. {""} (ref v) {\r. (r—v)}
Vrv. {re—uov} (i) {da. "z=v"%(r—ov)}

Vrv. {r—-}(r := v) {\..(r—v)}
Interpretation of triples: see definition.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

80/85

Chapter 7
The Frame Rule

Jean-Marie Madiot (Inria Paris) Separation Logic 1

Preservation of independent state

We have:
{7" — 2} (incr r) {)_. T 3}

We also have:

{r—2=%s— 7} (incr r) {A_. r—3 % s+ 7}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 82/85

Preservation of independent state

We have:
{7” +— 2} (incr r) {)_. T 3}

We also have:

{r—2=%s— 7} (incr r) {A_. r—3 % s+ 7}

More generally:

{r—2 % H} (incr r) {\.. r—> 3 = H}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

82/85

The frame rule

Principle: a triple remains valid when both the pre-condition and
the post-condition are extended with a same heap predicate.

General form:

(Hy} t o HY)

FRAME
{Hl * Hz} t {)\IH{ * Hg}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

83/85

Frame rule and allocation

We have:
{""} (ref 3) {Ar. (r—3)}

By the frame rule, we have:

{s +— 5} (ref 3) {A\r. (r—3) = (s —5)}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 84 /85

Frame rule and allocation
We have:

{""} (ref 3) {Ar. (r—3)}
By the frame rule, we have:

{s +— 5} (ref 3) {A\r. (r—3) = (s —5)}

This post-condition ensures r # s.

The reference cell r is thus guaranteed to be distinct from any cell that
might exist prior to the allocation of r.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 84 /85

The end!

Jean-Marie Madiot (Inria Paris) Separation Logic 1

	Pure facts
	Singleton heaps

