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Condensed history of separation logic

Floyd-Hoare Logic, or program logic, or axiomatic semantics

Alan Turing (1949), Checking a large routine: first program proof

Floyd, Hoare (1967-1969): current form of rules

fine for simple programs, tedious for pointer aliasing and concurrency

Separation Logic: assertions about fragments of memory/heap

Reynolds (2002): A Logic for Shared Mutable Data Structures

local reasoning, making it easy to reason about pointers

Concurrent Separation Logic (CSL)

Peter O’Hearn (2007): Resources, Concurrency and Local Reasoning

separation combined with critical sections for shared resources

The Iris framework (2015-2017)

Expressive and complex logic designed for CSL inside Rocq

Modalities, resources more general than memory, ghost state
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Origins

Burstall (1972): reasoning on with no sharing
Distinct Nonrepeating List Systems

Reynolds (1999): separating conjunction
Intuitionistic Reasoning about Shared Mutable

O’Hearn and Pym (1999): linear resources
The Logic of Bunched Implications

O’Hearn, Reynolds, Yang (2001)
Local Reasoning about Programs that Alter Data Structures.
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Examples
Micro-controller Klein et al NICTA Isabelle
Assembly language Chlipala et al MIT Rocq
Operating system Shao et al Yale Rocq
C (drivers) Yang et al Oxford Other
C-light (concurrent) Appel et al Princeton Rocq
C11 (concurrent) Vafeiadis et al MPI and MSR Paper
Java Parkinson et al MSR and Cambridge Other
Java Jacobs et al Leuven Verifast
Javascript Gardner et al Imperial College Paper
ML Morisset et al Harvard Rocq
OCaml Charguéraud Inria Rocq
SML Myreen et al U. of Cambridge HOL
Rust Jung et al MPI Rocq-Iris
Time complexity Guéneau et al Inria Rocq
Multicore OCaml Mével et al Inria Rocq-Iris
Space complexity Madiot et al Inria Rocq-Iris
... ... ... Rocq-Iris
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Interactive vs automated

Fully automated (e.g. Infer, SpaceInvader, Predator, MemCAD, SLAyer)

find many bugs

don’t find proofs

Semi-automated (Smallfoot, Heap Hop, VeriFast, Viper)

work well on some classes of programs

rely on user-provided invariants

hard to debug / understand failure

Interactive (Iris, VST, Ynot, CFML):

verified

easier to debug

expressive
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Choice of the logic

Most research projects, including mine, define separation logic inside a
logic framework.

We will use Rocq (Coq) and more precisely Iris, which is fact a whole
proof mode inside Rocq.

Installation instructions can be found at
https://gitlab.mpi-sws.org/iris/tutorial-popl20
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Differences with previous years
https://gitlab.mpi-sws.org/iris/tutorial-popl20

2-3 years ago and before, CFML:

typed ML-langage

termination

tools to accomodate ocaml

This year: Iris, with its toy langage

prolific research

concurrent programs

expressive

no types (in this course)

no termination (in this course)

In the beginning we use a much simpler model
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Chapter 1

Separation Logic Operators
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The heap, in programming

“The heap”

= the dynamically-allocated memory

malloc in C, new in some object-oriented languages,

sometimes implicit, especially in langages with garbage collection such
as Python, Javascript, OCaml

contains most things (not local variables, which are on the stack)
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The heap, formally

Definition
A partial map, or partial function, from a set 𝑋 to a set 𝑌 is a subset 𝐹
of 𝑋 ˆ 𝑌 that is functional: @𝑥𝑦1𝑦2 p𝑥, 𝑦1q P 𝐹 ^ p𝑥, 𝑦2q P 𝐹 ñ 𝑦1 “ 𝑦2.

Definition
A subheap, or heaplet, or just heap, is a finite map from locations (=
memory adresses) to values.

Examples, with locations = values = N:
tp1, 2q, p2, 3qu and H are heaps,

tp2, 1q, p2, 3qu is not a heap.

Joining
When dompℎ1q X dompℎ2q “ H we write ℎ1 Z ℎ2 for ℎ1 Y ℎ2.
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Heap predicates

A heap predicate 𝐻 is a predicate on heaps.
i.e. if ℎ is a heap then 𝐻 ℎ is a proposition.

In Rocq: 𝐻 : heap Ñ Prop where Prop is the type of propositions.

Primitive heap predicates:

x y empty heap

x𝑃 y pure fact

𝑙 ÞÑ 𝑣 singleton heap

𝐻 ˚ 𝐻 1 separating conjunction

D𝑥,𝐻 existential quantification
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Empty heap and pure facts

Definition:
x𝑃 y ” 𝜆𝑚. 𝑚 “ H ^ 𝑃
x y ” xTruey

Example: specification of “let a = 3 and b = a+1”.

Before: x y

After: x𝑎 “ 3 ^ 𝑏 “ 4y

Note: a and b are program variables and 𝑎 and 𝑏 are logical variables. In
reality a will be replaced by 3 in the rest of the program, or kept in an
environment, but it is convenient to name it 𝑎 in proofs.
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Singleton heap

Definition:
𝑙 ÞÑ 𝑣 ” 𝜆𝑚. 𝑚 “ tp𝑙, 𝑣qu ^ 𝑙 ‰ null

Example: specification of “let r = ref 3”.

Before: x y

After: 𝑟 ÞÑ 3

Example: specification of “incr s”.

Before: 𝑠 ÞÑ 𝑛 for some 𝑛

After: 𝑠 ÞÑ p𝑛 ` 1q

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 13 / 85



Singleton heap

Definition:
𝑙 ÞÑ 𝑣 ” 𝜆𝑚. 𝑚 “ tp𝑙, 𝑣qu ^ 𝑙 ‰ null

Example: specification of “let r = ref 3”.

Before: x y

After: 𝑟 ÞÑ 3

Example: specification of “incr s”.

Before: 𝑠 ÞÑ 𝑛 for some 𝑛

After: 𝑠 ÞÑ p𝑛 ` 1q

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 13 / 85



Separating conjunction

The heap predicate 𝐻1 ˚ 𝐻2 characterizes a heap made of two disjoint
parts, one that satisfies 𝐻1 and one that satisfies 𝐻2.

Example: p𝑟 ÞÑ 3q ˚ p𝑠 ÞÑ 4q describes two distinct reference cells.

Definition:

𝐻1 ˚ 𝐻2 ” 𝜆𝑚. D𝑚1𝑚2.

$

’

’

&

’

’

%

𝑚1 K 𝑚2

𝑚 “ 𝑚1 Z 𝑚2

𝐻1𝑚1

𝐻2𝑚2

where:

𝑚1 K 𝑚2 ” dom𝑚1 X dom𝑚2 “ H

𝑚1 Z 𝑚2 ” 𝑚1 Y 𝑚2 when 𝑚1 K 𝑚2
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Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

x y

H

x0 “ 1y

impossible

x1 “ 1y

H

x1 “ 1y ˚ x0 “ 1y

impossible

1 ÞÑ 2

tp1, 2qu

p1 ÞÑ 2q ˚ x1 “ 1y

tp1, 2qu

p1 ÞÑ 2q ˚ p1 ÞÑ 3q

impossible

p1 ÞÑ 2q ˚ p2 ÞÑ 1q

tp1, 2q, p2, 1qu
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Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

x y H x0 “ 1y impossible

x1 “ 1y H x1 “ 1y ˚ x0 “ 1y impossible

1 ÞÑ 2 tp1, 2qu p1 ÞÑ 2q ˚ x1 “ 1y tp1, 2qu

p1 ÞÑ 2q ˚ p1 ÞÑ 3q impossible p1 ÞÑ 2q ˚ p2 ÞÑ 1q tp1, 2q, p2, 1qu
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Heaps and heap predicates

Exercise:

1 specify: let r = ref 5 and s = ref 3 and t = r.

2 specify the state after subsequently executing: incr r.

3 specify the state after subsequently executing: incr t.

Incorrect answer: p𝑟 ÞÑ 5q ˚ p𝑠 ÞÑ 3q ˚ p𝑡 ÞÑ 5q.
Correct answer:

1 p𝑟 ÞÑ 5q ˚ p𝑠 ÞÑ 3q ˚ x𝑡 “ 𝑟y

2 p𝑟 ÞÑ 6q ˚ p𝑠 ÞÑ 3q ˚ x𝑡 “ 𝑟y

3 p𝑟 ÞÑ 7q ˚ p𝑠 ÞÑ 3q ˚ x𝑡 “ 𝑟y
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Record fields

Heap predicate describing the field 𝑓 of a record at address 𝑝:

𝑝.f ÞÑ 𝑣 ” p𝑝 ` offset of 𝑓q ÞÑ 𝑣

Example:

𝑝 ÞÑ 𝑥 ˚ 𝑝 ` 1 ÞÑ 𝑝1

sometimes written
𝑝.hd ÞÑ 𝑥 ˚ 𝑝.tl ÞÑ 𝑝1
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Representation of list cells

𝑝 ÞÑ p𝑥, 𝑝1q ” 𝑝 ÞÑ 𝑥 ˚ p𝑝 ` 1q ÞÑ 𝑝1

In general

𝑝 ÞÑ p𝑣0, . . . , 𝑣𝑛q ” 𝑝 ÞÑ 𝑣0 ˚ . . . ˚ p𝑝 ` 𝑛q ÞÑ 𝑣𝑛

Sometimes, to specify the names of the field, we write:

𝑝⇝ t|hd=𝑥; tl=𝑝1|u ” 𝑝.hd ÞÑ 𝑥 ˚ 𝑝.tl ÞÑ 𝑝1
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Existential quantification

Definition:
DD𝑥.𝐻 ” 𝜆𝑚. D𝑥. 𝐻 𝑚

Compare:

pD𝑥. 𝑃 q : Prop when p𝑃 : Propq

pDD𝑥.𝐻q : heap Ñ Prop when p𝐻 : heap Ñ Propq
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Existential quantification

Exercise: give heaps satisfying the following heap predicates

DD𝑥. xp1 ÞÑ 𝑥qy

nonsense

DD𝑥. p1 ÞÑ 𝑥q ˚ p2 ÞÑ 𝑥q

tp1, 7q, p2, 7qu

DD𝑥. x𝑥 “ 𝑥 ` 1y

impossible

DD𝑥. p𝑥 ÞÑ 𝑥 ` 1q ˚ p𝑥 ` 1 ÞÑ 𝑥q

tp1, 2q, p2, 1qu

DD𝑥. 1 ÞÑ 𝑥

tp1, 2qu

DD𝑥. p𝑥 ÞÑ 1q ˚ p𝑥 ÞÑ 2q

impossible

DD𝑃. x𝑃 y

H

DD𝐻.𝐻

any heap
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Existential quantification
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impossible
DD𝑃. x𝑃 y

H

DD𝐻.𝐻
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Summary

x y ” xTruey

x𝑃 y ” 𝜆𝑚. 𝑚 “ H ^ 𝑃

𝑙 ÞÑ 𝑣 ” 𝜆𝑚. 𝑚 “ tp𝑙, 𝑣qu ^ 𝑙 ‰ null

𝐻1 ˚ 𝐻2 ” 𝜆𝑚. D𝑚1𝑚2.

$

’

’

&

’

’

%

𝑚1 K 𝑚2

𝑚 “ 𝑚1 Z 𝑚2

𝐻1𝑚1

𝐻2𝑚2

DD𝑥.𝐻 ” 𝜆𝑚. D𝑥. 𝐻 𝑚
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Chapter 2

Representation Predicate for Lists
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Linked lists

Example of an assertion about a linked list containing r8; 5; 6s

𝑝 ÞÑ p8, 𝑝1q ˚ 𝑝1 ÞÑ p5, 𝑝2q ˚ 𝑝2 ÞÑ p6, nullq

We want it to work for any intermediate pointers, so we write instead:

DD𝑝1. 𝑝 ÞÑ p8, 𝑝1q ˚ DD𝑝2. 𝑝1 ÞÑ p5, 𝑝2q ˚ 𝑝2 ÞÑ p6, nullq
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Representation predicate for lists

Where 𝐿 is a “logical” list (e.g. a Rocq list), we write:

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1

Note: 𝑝⇝ MList𝐿 is notation for MList𝐿𝑝.
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Implementation of mutable lists in OCaml

Mutable lists (C-style), expressed in OCaml extended with null pointers.

type ’a cell = { mutable hd : ’a;

mutable tl : ’a cell }

The we write just:

{ hd = 8; tl = { hd = 5; tl = { hd = 6; tl = null } } }

but behind, there are 3 allocations and 6 assignments
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Separation properties

𝑝1 ⇝ MList𝐿1 ˚ 𝑝2 ⇝ MList𝐿2 ˚ 𝑝3 ⇝ MList𝐿3

Separation enforces: no cycles, and no sharing.
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Union heap predicate

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1

Equivalent to:

𝑝⇝ MList𝐿 ” x𝐿 “ nil ^ 𝑝 “ nully

__
`

DD𝑥𝐿1𝑝1. x𝐿 “ 𝑥 :: 𝐿1y

˚ 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1
˘

where:
𝐻1 __ 𝐻2 ” 𝜆𝑚. 𝐻1𝑚 _ 𝐻2𝑚
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List construction

let rec build n v =

if n = 0 then null else

let p’ = build (n-1) v in

{ hd = v; tl = p’ }

Pre-condition:
x𝑛 ě 0y

Post-condition, where 𝑝 denotes the result:

DD𝐿. 𝑝⇝ MList𝐿 ˚ xlength𝐿 “ 𝑛 ^ p@𝑖. 0 ď 𝑖 ă 𝑛 ñ 𝐿r𝑖s “ 𝑣qy
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List construction: proof (1/2)

DD𝐿. 𝑝⇝ MList𝐿 ˚ xlength𝐿 “ 𝑛 ^ p@𝑖. 0 ď 𝑖 ă 𝑛 ñ 𝐿r𝑖s “ 𝑣qy

Case 𝑛 “ 0. We have 𝑝 “ null. We take 𝐿 “ nil.

To produce 𝑝⇝ MList𝐿, we need to produce null⇝ MList nil.

We use:

pnull⇝ MList nilq “ x y
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List construction: proof (2/2)

DD𝐿. 𝑝⇝ MList𝐿 ˚ xlength𝐿 “ 𝑛 ^ p@𝑖. 0 ď 𝑖 ă 𝑛 ñ 𝐿r𝑖s “ 𝑣qy

Case 𝑛 ą 0. By IH, we have: 𝑝1 ⇝ MList𝐿1, with 𝐿1 of length 𝑛 ´ 1.

To produce 𝑝⇝ MList𝐿, we have 𝑝1 ⇝ MList𝐿1 and 𝑝 ÞÑ p𝑣, 𝑝1q.

`

DD𝑝1. 𝑝 ÞÑ p𝑣, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1
˘

“ 𝑝⇝ MList p𝑣 :: 𝐿1q
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In-place list reversal: code

let reverse p0 =

let r = ref p0 in

let s = ref null in

while !r <> null do

let p = !r in

r := p.tl;

p.tl <- !s;

s := p;

done;

!s

Exercise:

1 Specify the state before the loop.

2 Specify the state after the loop.

3 Specify the loop invariant.
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In-place list reversal: invariants

Before the loop:

𝑟 ÞÑ 𝑝0 ˚ 𝑠 ÞÑ null ˚ 𝑝0 ⇝ MList𝐿

After the loop:

DD𝑞. 𝑟 ÞÑ null ˚ 𝑠 ÞÑ 𝑞 ˚ 𝑞 ⇝ MList prev𝐿q

Loop invariant:

DD𝑝𝑞𝐿1𝐿2. 𝑟 ÞÑ 𝑝 ˚ 𝑝⇝ MList𝐿2

˚ 𝑠 ÞÑ 𝑞 ˚ 𝑞 ⇝ MList𝐿1

˚ x𝐿 “ rev𝐿1`̀ 𝐿2y
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Before the loop:

𝑟 ÞÑ 𝑝0 ˚ 𝑠 ÞÑ null ˚ 𝑝0 ⇝ MList𝐿

After the loop:

DD𝑞. 𝑟 ÞÑ null ˚ 𝑠 ÞÑ 𝑞 ˚ 𝑞 ⇝ MList prev𝐿q

Loop invariant:
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In-place list reversal: proof (1/2)

Invariant:
DD𝑝𝑞𝐿1𝐿2. 𝑟 ÞÑ 𝑝 ˚ 𝑠 ÞÑ 𝑞

˚ 𝑝⇝ MList𝐿2 ˚ 𝑞 ⇝ MList𝐿1

˚ x𝐿 “ rev𝐿1`̀ 𝐿2y

Initial state implies the invariant: take 𝑝 “ 𝑝0 and 𝐿1 “ nil and 𝐿2 “ 𝐿.

𝑟 ÞÑ 𝑝0 ˚ 𝑝0 ⇝ MList𝐿 ˚ 𝑠 ÞÑ null ˚ null⇝ MList nil ˚ x𝐿 “ rev nil`̀ 𝐿y

Invariant implies the final state: exploit 𝑝 “ null.

𝑟 ÞÑ null ˚ null⇝ MList𝐿2 ˚ 𝑠 ÞÑ 𝑞 ˚ 𝑞 ⇝ MList𝐿1 ˚ x𝐿 “ rev𝐿1̀ 𝐿̀2y

Derive 𝐿2 “ nil using:

pnull⇝ MList𝐿q “ x𝐿 “ nily
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Conversion rule for empty lists

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1

Let us prove: pnull⇝ MList𝐿q “ x𝐿 “ nily

– From right to left: we may assume 𝐿 “ nil, thus:

xnil “ nily “ x y “ pnull⇝ MList nilq

– From left to right: if 𝐿 “ nil, then easy; otherwise 𝐿 “ 𝑥 :: 𝐿1 and:

null⇝ MList p𝑥 :: 𝐿1q “
`

DD𝑝1. null ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1
˘

contradicts the fact that no data can be allocated at the null address.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 34 / 85



Conversion rule for empty lists

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1

Let us prove: pnull⇝ MList𝐿q “ x𝐿 “ nily

– From right to left: we may assume 𝐿 “ nil, thus:

xnil “ nily “ x y “ pnull⇝ MList nilq

– From left to right: if 𝐿 “ nil, then easy; otherwise 𝐿 “ 𝑥 :: 𝐿1 and:

null⇝ MList p𝑥 :: 𝐿1q “
`

DD𝑝1. null ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1
˘

contradicts the fact that no data can be allocated at the null address.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 34 / 85



In-place list reversal: proof (2/2)

Transition when 𝑝 ‰ null:

𝑝⇝ MList𝐿2 ˚ 𝑞 ⇝ MList𝐿1 ˚ x𝐿 “ rev𝐿1`̀ 𝐿2y

to

DD𝑥𝐿1
2𝑝

1. x𝐿2 “ 𝑥 :: 𝐿1
2y ˚ 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MList𝐿1

2

˚ 𝑞 ⇝ MList𝐿1 ˚ x𝐿 “ rev𝐿1`̀ 𝐿2y

After update of 𝑝.tl to the value 𝑞:

𝑝⇝ t|hd=𝑥; tl=𝑞|u ˚ 𝑞 ⇝ MList𝐿1

˚ 𝑝1 ⇝ MList𝐿1
2 ˚ x𝐿 “ rev𝐿1`̀ p𝑥 :: 𝐿1

2qy

to

𝑞 ⇝ MList p𝑥 :: 𝐿1q ˚ 𝑝1 ⇝ MList𝐿1
2 ˚ x𝐿 “ rev p𝑥 :: 𝐿1q`̀ 𝐿2y
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Conversion rules for nonempty lists

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MList𝐿1

𝑝⇝ MList𝐿 ˚ x𝑝 ‰ nully “ DD𝑥𝐿1𝑝1. x𝐿 “ 𝑥 :: 𝐿1y

˚ 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MList𝐿1
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Summary

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MList𝐿1
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Break!
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Chapter 3

Representation Predicate for List Segments
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Length of a mutable list using a while loop

let rec mlength (p:’a cell) =

let f = ref p in

let t = ref 0 in

while !f != null do

incr t;

f := (!f).tl;

done;

!t

Exercise:

1 Specify the state before the loop.

2 Specify the state after the loop.

3 Draw a picture describing a state during the loop.

4 Try to state a loop invariant. What do you need?
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Mlength: initial and final states

Before the loop:

p𝑝⇝ MList𝐿q ˚ p𝑓 ÞÑ 𝑝q ˚ p𝑡 ÞÑ 0q

After the loop:

p𝑝⇝ MList𝐿q ˚ p𝑓 ÞÑ nullq ˚ p𝑡 ÞÑ length𝐿q
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Mlength: loop invariant

Loop invariant:

DD𝐿1𝐿2𝑞. x𝐿 “ 𝐿1`̀ 𝐿2y ˚ p𝑡 ÞÑ length𝐿1q ˚ p𝑓 ÞÑ 𝑞q

˚ p𝑝⇝ MlistSeg 𝑞 𝐿1q ˚ p𝑞 ⇝ MList𝐿2q
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Representation predicate for list segments
𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully
|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MList𝐿1

Exercise: generalize MList to define 𝑝⇝ MlistSeg 𝑞 𝐿, where 𝐿 denotes
the list of items in the list segment from 𝑝 (inclusive) to 𝑞 (exclusive).

𝑝⇝ MlistSeg 𝑞 𝐿 ” match𝐿with
| nil ñ x𝑝 “ 𝑞y

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿1

Remark:
𝑝⇝ MList𝐿 “ 𝑝⇝ MlistSeg null𝐿
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Mlength: proof

Enter: 𝐿1 “ nil ^ 𝐿2 “ 𝐿 ^ 𝑞 “ 𝑝

x y “ p𝑝⇝ MlistSeg 𝑝 nilq

Exit: 𝐿1 “ 𝐿 ^ 𝐿2 “ nil ^ 𝑞 “ null

p𝑝⇝ MlistSeg null𝐿q “ p𝑝⇝ MList𝐿q

Step: 𝐿2 “ 𝑥 :: 𝐿1
2 ^ 𝑞 ‰ null ^ 𝑞.tl “ 𝑞1

DD𝑞. 𝑝⇝ MlistSeg 𝑞 𝐿1 ˚ 𝑞 ⇝ t|hd=𝑥; tl=𝑞1|u

“ 𝑝⇝ MlistSeg 𝑞1 p𝐿1`̀ 𝑥 :: nilq

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 44 / 85



Mlength: proof

Enter: 𝐿1 “ nil ^ 𝐿2 “ 𝐿 ^ 𝑞 “ 𝑝

x y “ p𝑝⇝ MlistSeg 𝑝 nilq

Exit: 𝐿1 “ 𝐿 ^ 𝐿2 “ nil ^ 𝑞 “ null

p𝑝⇝ MlistSeg null𝐿q “ p𝑝⇝ MList𝐿q

Step: 𝐿2 “ 𝑥 :: 𝐿1
2 ^ 𝑞 ‰ null ^ 𝑞.tl “ 𝑞1

DD𝑞. 𝑝⇝ MlistSeg 𝑞 𝐿1 ˚ 𝑞 ⇝ t|hd=𝑥; tl=𝑞1|u

“ 𝑝⇝ MlistSeg 𝑞1 p𝐿1`̀ 𝑥 :: nilq

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 44 / 85



Mlength: proof

Enter: 𝐿1 “ nil ^ 𝐿2 “ 𝐿 ^ 𝑞 “ 𝑝

x y “ p𝑝⇝ MlistSeg 𝑝 nilq

Exit: 𝐿1 “ 𝐿 ^ 𝐿2 “ nil ^ 𝑞 “ null

p𝑝⇝ MlistSeg null𝐿q “ p𝑝⇝ MList𝐿q

Step: 𝐿2 “ 𝑥 :: 𝐿1
2 ^ 𝑞 ‰ null ^ 𝑞.tl “ 𝑞1

DD𝑞. 𝑝⇝ MlistSeg 𝑞 𝐿1 ˚ 𝑞 ⇝ t|hd=𝑥; tl=𝑞1|u

“ 𝑝⇝ MlistSeg 𝑞1 p𝐿1`̀ 𝑥 :: nilq
Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 44 / 85



Splitting rules for list segments

𝑝⇝ MlistSeg 𝑞 p𝑥 :: 𝐿1q “ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q ˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿1

𝑝⇝ MlistSeg 𝑞 p𝐿1`̀ 𝐿2q “ DD𝑝1. 𝑝⇝ MlistSeg 𝑝1 𝐿1

˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿2
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An implementation of mutable queues

We implement a queue with two pointers to the front and back of the
same list segment, with the last cell storing dummy values allowing for less
branching (simpler and slightly faster)

type ’a queue = { mutable front : ’a cell;

mutable back : ’a cell; }

Exercise: define the representation predicate 𝑝⇝ Queue𝐿.

𝑝⇝ Queue𝐿 ” DD𝑓𝑏. 𝑝 ÞÑ p𝑓, 𝑏q ˚ 𝑓 ⇝ MlistSeg 𝑏 𝐿 ˚ 𝑏 ÞÑ p , q

Alternative for the last cell: DD𝑦𝑞. 𝑏 ÞÑ p𝑦, 𝑞q
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Summary

𝑝⇝ MlistSeg 𝑞 𝐿 ” match𝐿with
| nil ñ x𝑝 “ 𝑞y

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿1

Split and merge of segments:

𝑝⇝ MlistSeg 𝑞 p𝐿1`̀ 𝐿2q “ DD𝑝1. 𝑝⇝ MlistSeg 𝑝1 𝐿1

˚ 𝑝1 ⇝ MlistSeg 𝑞 𝐿2
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Chapter 4

Representation Predicate for Trees
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Implementation of a mutable binary trees

3

2 null null 4

5 null null 6 null null

p

Empty trees represented as null pointers. Nodes represented as records.

type node = {

mutable item : int;

mutable left : node;

mutable right : node; }
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Logical binary trees

Inductive tree : Type :=
| Leaf : tree
| Node : int Ñ tree Ñ tree Ñ tree.

Example:

Node 3
(Node 2 Leaf Leaf)
(Node 4 (Node 5 Leaf Leaf)

(Node 6 Leaf Leaf))

3

2 4

5 6
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Representation predicate for binary trees

3

2 null null 4

5 null null 6 null null

p
𝑇 “

3

2 4

5 6

Representation predicate:
𝑝⇝ Mtree𝑇
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Representation predicate for binary trees

𝑝⇝ MList𝐿 ” match𝐿with

| nil ñ x𝑝 “ nully

|𝑥 :: 𝐿1 ñ DD𝑝1. 𝑝 ÞÑ p𝑥, 𝑝1q

˚ 𝑝1 ⇝ MList𝐿1

Exercise: define 𝑝⇝ Mtree𝑇 .

𝑝⇝ Mtree𝑇 ” match𝑇 with
| Leaf ñ x𝑝 “ nully
|Node𝑥𝑇1 𝑇2 ñ DD𝑝1𝑝2.

𝑝 ÞÑ p𝑥, 𝑝1, 𝑝2q

˚ 𝑝1 ⇝ Mtree𝑇1

˚ 𝑝2 ⇝ Mtree𝑇2
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Complete binary tree

4

3

2

1

𝑝⇝ MtreeDepth𝑛𝑇

describes a complete binary tree whose leaves are all at depth 𝑛.
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Complete binary tree (1/2)

𝑝⇝ Mtree𝑇 ” match𝑇 with
| Leaf ñ x𝑝 “ nully
|Node𝑥𝑇1 𝑇2 ñ DD𝑝1𝑝2.

𝑝 ÞÑ p𝑥, 𝑝1, 𝑝2q

˚ 𝑝1 ⇝ Mtree𝑇1

˚ 𝑝2 ⇝ Mtree𝑇2

Exercise: define 𝑝⇝ MtreeDepth𝑛𝑇 by modifying 𝑝⇝ Mtree𝑇 .
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Complete binary tree (1/2), solution

𝑝⇝ MtreeDepth𝑛𝑇 ” match𝑇 with
| Leaf ñ x𝑝 “ null ^ 𝑛 “ 0y

|Node𝑥𝑇1 𝑇2 ñ DD𝑝1𝑝2. x𝑛 ą 0y ˚

𝑝 ÞÑ p𝑥, 𝑝1, 𝑝2q

˚ 𝑝1 ⇝ MtreeDepth p𝑛 ´ 1q𝑇1

˚ 𝑝2 ⇝ MtreeDepth p𝑛 ´ 1q𝑇2

Or:

𝑝⇝ MtreeDepth𝑛𝑇 ” match𝑛, 𝑇 with

|𝑂, Leaf ñ x𝑝 “ nully

|𝑆 𝑚, Node𝑥𝑇1 𝑇2 ñ DD𝑝1𝑝2.
𝑝 ÞÑ p𝑥, 𝑝1, 𝑝2q

˚ 𝑝1 ⇝ MtreeDepth𝑚𝑇1

˚ 𝑝2 ⇝ MtreeDepth𝑚𝑇2

| , ñ xFalsey
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Complete binary tree (2/2)

Exercise: give an alternative definition of “𝑝⇝ MtreeDepth𝑛𝑇”, this
time by reusing the definition of 𝑝⇝ Mtree𝑇 without modification.

𝑝⇝ MtreeDepth𝑛𝑇 ” 𝑝⇝ Mtree𝑇 ˚ xdepth𝑛𝑇 y

Inductive depth : int Ñ tree Ñ Prop :=
| depth_leaf :

depth 0 Leaf

| depth_node : @n x T1 T2,
depth n T1 Ñ

depth n T2 Ñ

depth (n+1) (Node x T1 T2).
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Complete binary tree of unspecified depth

𝑝⇝ MtreeDepth𝑛𝑇 ” p𝑝⇝ Mtree𝑇 q ˚ xdepth𝑛𝑇 y

Exercise: define a predicate 𝑝⇝ MtreeComplete𝑇 for describing a
mutable complete binary tree, of some unspecified depth.

Equivalent definitions for 𝑝⇝ MtreeComplete𝑇 :

1 DD𝑛. 𝑝⇝ MtreeDepth𝑛𝑇

2 DD𝑛. p𝑝⇝ Mtree𝑇 q ˚ xdepth𝑛𝑇 y

3 p𝑝⇝ Mtree𝑇 q ˚ xD𝑛. depth𝑛𝑇 y
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Binary search tree property

The proposition search𝑇 𝐸 asserts that the pure tree 𝑇 describes a valid
search tree and that 𝐸 describes the set integers that it contains.

Inductive search : tree Ñ set int Ñ Prop :=
| search_leaf :

search Leaf H

| search_node : @x T1 T2,
search T1 E1 Ñ

search T2 E2 Ñ

foreach (is_lt x) E1 Ñ

foreach (is_gt x) E2 Ñ

search (Node x T1 T2) (txu Y E1 Y E2).
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Binary search tree predicate

Exercise: define a predicate 𝑝⇝ MsearchTree𝐸 for describing a mutable
binary search tree storing the set of elements 𝐸.

𝑝⇝ MsearchTree𝐸 ” DD𝑇. 𝑝⇝ Mtree𝑇 ˚ xsearch𝑇 𝐸y

For example, a call “add x p” can be specified as follows:

pre-condition: 𝑝⇝ MsearchTree𝐸

post-condition: 𝑝⇝ MsearchTree p𝐸 Y t𝑥uq
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Summary

Common representation predicate for all binary trees:

𝑝⇝ Mtree𝑇 ” match𝑇 with
| Leaf ñ x𝑝 “ nully
|Node𝑥𝑇1 𝑇2 ñ DD𝑝1𝑝2.

𝑝 ÞÑ p𝑥, 𝑝1, 𝑝2q

˚ 𝑝1 ⇝ Mtree𝑇1 ˚ 𝑝2 ⇝ Mtree𝑇2

Invariants are expressed on the pure trees:

𝑝⇝ MsearchTree𝐸 ” DD𝑇. 𝑝⇝ Mtree𝑇 ˚ xsearch𝑇 𝐸y

Operations are specified in terms of the model. For example, add x p

changes 𝑝⇝ MsearchTree𝐸 into 𝑝⇝ MsearchTree p𝐸 Y t𝑥uq.
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Chapter 5

Structures with sharing
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The union-find data structure

type node = node ref

Implements an equivalence relation 𝑆 of type: loc Ñ loc Ñ Prop.

𝑆 𝑎 𝑏 ô 𝑎 and 𝑏 are two valid nodes with the same root

Remark: 𝑆 𝑎 𝑎 holds iff 𝑎 is the location of an existing node.
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Representation of union-find cells

p𝑝1 ÞÑ 𝑞1q ˚ p𝑝2 ÞÑ 𝑞2q ˚ ... ˚ p𝑝𝑛 ÞÑ 𝑞𝑛q

“
Æ

p𝑝𝑖,𝑞𝑖qP𝐺 p𝑝𝑖 ÞÑ 𝑞𝑖q

where 𝐺 is a finite map from locations to locations.
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Invariants of union-find

Predicate “root𝐺𝑎𝑟” asserts that in the graph 𝐺, node 𝑎 has root 𝑟.

Inductive root : fmap loc loc Ñ loc Ñ loc Ñ Prop :=
| root_init : @G x,

binds G x null Ñ

root G x x

| root_step : @G x y r,
binds G x y Ñ

y ‰null Ñ

root G y r Ñ

root G x r.
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Specification of the union-find structure

UnionFind𝑆 ” DD𝐺.
`

Æ

p𝑝,𝑞qP𝐺 𝑝 ÞÑ 𝑞
˘

˚ x@𝑎 P dom𝐺. D𝑟. root𝐺𝑎𝑟y

˚ x@𝑎𝑏. 𝑆 𝑎 𝑏 ô D𝑟. root𝐺𝑎𝑟 ^ root𝐺𝑏 𝑟y

For example, “let x = is_equiv a b” is specified as follows:

pre-condition: x𝑆 𝑎 𝑎 ^ 𝑆 𝑏 𝑏y ˚ UnionFind𝑆

post-condition: x𝑥 “ true ô 𝑆 𝑎 𝑏y ˚ UnionFind𝑆
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Summary

Iterated separating conjunction, written
Ç

.

For Union-Find:
æ

p𝑝,𝑞qP𝐺

𝑝 ÞÑ 𝑞
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Chapter 6

Separation Logic Triples
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Separation Logic triples

A term 𝑡 is specified using a Separation Logic triple of the form:

t𝐻u 𝑡 t𝜆𝑥.𝐻 1u

𝐻 describes the initial heap

𝑡 is the term being specified

𝑥 is a name for the value produced by 𝑡

𝐻 1 describes the final heap and the output value 𝑥.

t𝐻u 𝑡 t𝑄u

𝐻 (pre-condition) is a predicate of type: heap Ñ Prop

𝑡 has an ML type interpreted in the logic as type 𝐴

𝑄 (post-condition) is a predicate of type: 𝐴 Ñ heap Ñ Prop.
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Examples of triples

Example 1:
t x y u pref 3q t𝜆𝑟. 𝑟 ÞÑ 3u

Example 2:
t x y u p3q t𝜆𝑥. x𝑥 “ 3yu

Example 3:
t𝑟 ÞÑ 3u p!rq t𝜆𝑥. x𝑥 “ 3y ˚ p𝑟 ÞÑ 3qu

Example 4:
t𝑟 ÞÑ 3u pincr rq t𝜆 . p𝑟 ÞÑ 4qu

Remark: in “𝜆 . p𝑟 ÞÑ 4q” we do not care about the return value.
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Specification of functions

A function 𝑓 is specified using a triple of the form:

@𝑎. t𝐻u p𝑓 𝑎q t𝜆𝑥.𝐻 1u

𝐻 is the pre-condition

𝑓 is the function

𝑎 is the value of the argument

𝑥 is a name for the return value

𝐻 1 is the post-condition

Example:
@𝑟𝑛. t𝑟 ÞÑ 𝑛u pincr rq t𝜆 . 𝑟 ÞÑ p𝑛 ` 1qu
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Specification of operations on memory cells

Exercise: specify the primitive operations on references.

pref vq

p!rq

pr := vq

Solution:
@𝑣. tx yu pref vq t𝜆𝑟. p𝑟 ÞÑ 𝑣qu

@𝑟𝑣. t𝑟 ÞÑ 𝑣u p!rq t𝜆𝑥. x𝑥 “ 𝑣y ˚ p𝑟 ÞÑ 𝑣qu

@𝑟𝑣𝑤. t𝑟 ÞÑ 𝑤u pr := vq t𝜆 . p𝑟 ÞÑ 𝑣qu

@𝑟𝑣. tDD𝑤. 𝑟 ÞÑ 𝑤u pr := vq t𝜆 . p𝑟 ÞÑ 𝑣qu

@𝑟𝑣. t𝑟 ÞÑ –u pr := vq t𝜆 . p𝑟 ÞÑ 𝑣qu

where p𝑟 ÞÑ –q ” DD𝑤. 𝑟 ÞÑ 𝑤.
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Specification of partial functions

Presentation 1:

@𝑛. tx𝑛 ě 0yu pfact𝑛q t𝜆𝑥. x𝑥 “ 𝑛!yu

Presentation 2:

@𝑛. 𝑛 ě 0 ñ tx yu pfact𝑛q t𝜆𝑥. x𝑥 “ 𝑛!yu

distinguish:
fact 𝑛: the program called with argument 𝑛

𝑛!: the mathematical quantity
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Specification of operations on arrays

Exercise: specify operations on arrays in terms of 𝑝⇝ Array𝐿
(assuming Array is already defined).

pArray.get p iq

pArray.set p i vq

pArray.length pq

pArray.create n vq

Notation:

𝐿r𝑖s ” 𝑖-th element of the list 𝐿

𝐿r𝑖 :“ 𝑣s ” copy of 𝐿 with 𝑣 at index 𝑖

|𝐿| ” length of 𝐿

𝑖 P dom𝐿 ” 0 ď 𝑖 ă |𝐿|
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Specification of operations on arrays

@𝑖𝐿𝑝 𝑖 P dom𝐿 ñ t𝑝⇝ Array𝐿u

pArray.get p iq

t𝜆𝑥. x𝑥 “ 𝐿r𝑖sy ˚ 𝑝⇝ Array𝐿u

@𝑖𝐿𝑝 𝑖 P dom𝐿 ñ t𝑝⇝ Array𝐿u

pArray.set p i vq

t𝜆 . 𝑝⇝ Array p𝐿r𝑖 :“ 𝑣squ

@𝑝𝐿 t𝑝⇝ Array𝐿u

pArray.length pq

t𝜆𝑛. x𝑛 “ |𝐿|y ˚ 𝑝⇝ Array𝐿u

@𝑛𝑣 𝑛 ě 0 ñ tx yu

pArray.create n vq

t𝜆𝑝. DD𝐿. p𝑝⇝ Array𝐿q ˚ x|𝐿| “ 𝑛y

˚ x@𝑖 P dom𝐿. 𝐿r𝑖s “ 𝑣yu
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Interpretation of triples (1/3)

Assume for now that triples describe the entire state.

A triple t𝐻u 𝑡 t𝜆𝑥.𝐻 1u is interpreted in total correctness as:

@𝑚. 𝐻 𝑚 ñ D𝑣. D𝑚1. ă𝑡,𝑚ą ó ă𝑣,𝑚1ą ^ pr𝑥 Ñ 𝑣s𝐻 1q𝑚1

(assuming a deterministic semantics)

How is a triple t𝐻u 𝑡 t𝑄u interpreted?

Let 𝑄 “ 𝜆𝑥.𝐻 1. We have 𝑄𝑣 “ r𝑥 Ñ 𝑣s𝐻 1. Thus, the interpretation is:

@𝑚. 𝐻 𝑚 ñ D𝑣. D𝑚1. ă𝑡,𝑚ą ó ă𝑣,𝑚1ą ^ 𝑄𝑣𝑚1
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Interpretation of triples (2/3)

In Separation Logic, a triple describes only a part 𝑚1 of the heap.
The rest of the heap, call it 𝑚2, is assumed to remain unchanged.

Recall that:
𝑚1 K 𝑚2 ” pdom𝑚1 X dom𝑚2 “ Hq

How is a triple t𝐻u 𝑡 t𝑄u interpreted?

@𝑚1𝑚2.

#

𝐻𝑚1

𝑚1 K 𝑚2

ñ D𝑣. D𝑚1
1.

$

’

&

’

%

ă𝑡,𝑚1 Z 𝑚2ą ó ă𝑣,𝑚1
1 Z 𝑚2ą

𝑄𝑣𝑚1
1

𝑚1
1 K 𝑚2

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 76 / 85



Interpretation of triples (2/3)

In Separation Logic, a triple describes only a part 𝑚1 of the heap.
The rest of the heap, call it 𝑚2, is assumed to remain unchanged.

Recall that:
𝑚1 K 𝑚2 ” pdom𝑚1 X dom𝑚2 “ Hq

How is a triple t𝐻u 𝑡 t𝑄u interpreted?

@𝑚1𝑚2.

#

𝐻𝑚1

𝑚1 K 𝑚2

ñ D𝑣. D𝑚1
1.

$

’

&

’

%

ă𝑡,𝑚1 Z 𝑚2ą ó ă𝑣,𝑚1
1 Z 𝑚2ą

𝑄𝑣𝑚1
1

𝑚1
1 K 𝑚2

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 76 / 85



Function with garbage collection

What is the natural specification of function myref?

let myref x =

let r = ref x in

let s = ref r in

r

What is missing from our current interpretation of triple?

From:

tx yu pmyref xq t𝜆𝑟. 𝑟 ÞÑ 𝑥 ˚ DD𝑠. 𝑠 ÞÑ 𝑟u

To:

tx yu pmyref xq t𝜆𝑟. 𝑟 ÞÑ 𝑥u

We need the post-condition to describe only a subset of the output heap.
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Interpretation of triples (3/3)

Let 𝑚3 describe the garbage heap, that is, the part of the final heap that
corresponds either to cells from 𝑚1 or to cells allocated during the
evaluation of 𝑡, and that are not described by the post-condition.

We interpret a triple t𝐻u 𝑡 t𝑄u as:

@𝑚1𝑚2.

#

𝐻𝑚1

𝑚1 K 𝑚2

ñ D𝑣𝑚1
1𝑚3.

$

’

&

’

%

ă𝑡,𝑚1 Z 𝑚2ą ó ă𝑣,𝑚1
1 Z 𝑚2 Z 𝑚3ą

𝑄𝑣𝑚1
1

𝑚1
1 K 𝑚2 K 𝑚3
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Interpretation of triples (3/3), revisited

We introduce a new heap predicate, written GC, that holds of any heap.

GC ” DD𝐻.𝐻

(sometimes just called True, because it is equivalent to 𝜆𝑚.True, but it
looks too much like xTruey.)

Definition (Separation Logic Triple)

We define t𝐻u 𝑡 t𝑄u as:

@𝐻 1𝑚. p𝐻 ˚ 𝐻 1q𝑚 ñ D𝑣𝑚1. ă𝑡,𝑚ą ó ă𝑣,𝑚1ą ^ p𝑄𝑣 ˚ 𝐻 1 ˚ GCq𝑚1
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Summary

Separation Logic triple:
t𝐻u 𝑡 t𝜆𝑥.𝐻 1u

Specification of a function:

@𝑎.@... . t𝐻u p𝑓 𝑎q t𝜆𝑥.𝐻 1u

Specification of primitive functions:

@𝑣. tx yu pref vq t𝜆𝑟. p𝑟 ÞÑ 𝑣qu

@𝑟𝑣. t𝑟 ÞÑ 𝑣u p!rq t𝜆𝑥. x𝑥 “ 𝑣y ˚ p𝑟 ÞÑ 𝑣qu

@𝑟𝑣. t𝑟 ÞÑ –u pr := vq t𝜆 . p𝑟 ÞÑ 𝑣qu

Interpretation of triples: see definition.
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Chapter 7

The Frame Rule
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Preservation of independent state

We have:
t𝑟 ÞÑ 2u pincr rq t𝜆 . 𝑟 ÞÑ 3u

We also have:

t𝑟 ÞÑ 2 ˚ 𝑠 ÞÑ 7u pincr rq t𝜆 . 𝑟 ÞÑ 3 ˚ 𝑠 ÞÑ 7u

More generally:

t𝑟 ÞÑ 2 ˚ 𝐻u pincr rq t𝜆 . 𝑟 ÞÑ 3 ˚ 𝐻u
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The frame rule

Principle: a triple remains valid when both the pre-condition and
the post-condition are extended with a same heap predicate.

General form:

t𝐻1u 𝑡 t𝜆𝑥.𝐻 1
1u

t𝐻1 ˚ 𝐻2u 𝑡 t𝜆𝑥.𝐻 1
1 ˚ 𝐻2u

Frame
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Frame rule and allocation

We have:
t x y u pref 3q t𝜆𝑟. p𝑟 ÞÑ 3qu

By the frame rule, we have:

t𝑠 ÞÑ 5u pref 3q t𝜆𝑟. p𝑟 ÞÑ 3q ˚ p𝑠 ÞÑ 5qu

This post-condition ensures 𝑟 ‰ 𝑠.

The reference cell 𝑟 is thus guaranteed to be distinct from any cell that
might exist prior to the allocation of 𝑟.
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The end!
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