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Condensed history of separation logic

Floyd-Hoare Logic, or program logic, or axiomatic semantics

e Alan Turing (1949), Checking a large routine: first program proof

e Floyd, Hoare (1967-1969): current form of rules

@ fine for simple programs, tedious for pointer aliasing and concurrency
Separation Logic: assertions about fragments of memory/heap

@ Reynolds (2002): A Logic for Shared Mutable Data Structures

@ local reasoning, making it easy to reason about pointers
Concurrent Separation Logic (CSL)

@ Peter O'Hearn (2007): Resources, Concurrency and Local Reasoning

@ separation combined with critical sections for shared resources
The lIris framework (2015-2017)

@ Expressive and complex logic designed for CSL inside Rocq

@ Modalities, resources more general than memory, ghost state
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Origins

@ Burstall (1972): reasoning on with no sharing
Distinct Nonrepeating List Systems

@ Reynolds (1999): separating conjunction
Intuitionistic Reasoning about Shared Mutable

@ O'Hearn and Pym (1999): linear resources
The Logic of Bunched Implications

e O’'Hearn, Reynolds, Yang (2001)
Local Reasoning about Programs that Alter Data Structures.
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Examples
Micro-controller
Assembly language
Operating system
C (drivers)

C-light (concurrent)
C11 (concurrent)
Java

Java

Javascript

ML

OCaml

SML

Rust

Time complexity
Multicore OCaml
Space complexity

Jean-Marie Madiot (Inria Paris)

Klein et al
Chlipala et al
Shao et al
Yang et al
Appel et al
Vafeiadis et al
Parkinson et al
Jacobs et al
Gardner et al
Morisset et al
Charguéraud
Myreen et al
Jung et al
Guéneau et al
Mével et al
Madiot et al

Separation Logic 1

NICTA

MIT

Yale

Oxford

Princeton

MPI and MSR
MSR and Cambridge
Leuven

Imperial College
Harvard

Inria

U. of Cambridge
MPI

Inria

Inria

Inria

February 3, 2026

Isabelle
Rocq
Rocq
Other
Rocq
Paper
Other
Verifast
Paper
Rocq
Rocq
HOL
Rocqg-Iris
Rocq
Rocqg-Iris
Rocg-Iris
Rocg-Iris

4/85



Interactive vs automated

Fully automated (e.g. Infer, Spacelnvader, Predator, MemCAD, SLAyer)
o find many bugs

@ don't find proofs

Semi-automated (Smallfoot, Heap Hop, VeriFast, Viper)
@ work well on some classes of programs
@ rely on user-provided invariants

@ hard to debug / understand failure

Interactive (Iris, VST, Ynot, CFML):
@ verified
@ easier to debug

@ expressive

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 5/85



Choice of the logic

Most research projects, including mine, define separation logic inside a
logic framework.

We will use Rocq (Coq) and more precisely Iris, which is fact a whole
proof mode inside Rocq.

Installation instructions can be found at
https://gitlab.mpi-sws.org/iris/tutorial-popl20
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https://gitlab.mpi-sws.org/iris/tutorial-popl20

Differences with previous years
https://gitlab.mpi-sws.org/iris/tutorial-popl20

2-3 years ago and before, CFML:

typed ML-langage
termination

tools to accomodate ocaml

This year: lIris, with its toy langage

prolific research
concurrent programs
expressive

no types (in this course)

no termination (in this course)

In the beginning we use a much simpler model
Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026
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Chapter 1

Separation Logic Operators
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The heap, in programming

“The heap”
@ = the dynamically-allocated memory
@ malloc in C, new in some object-oriented languages,

@ sometimes implicit, especially in langages with garbage collection such
as Python, Javascript, OCaml

@ contains most things (not local variables, which are on the stack)
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The heap, formally

Definition
A partial map, or partial function, from a set X to a set Y is a subset F
of X x Y that is functional: Yxy1y2 (x,y1) € F A (x,y2) € F = y1 = ya.

Definition
A subheap, or heaplet, or just heap, is a finite map from locations (=
memory adresses) to values.

Examples, with locations = values = N:
e {(1,2),(2,3)} and & are heaps,
e {(2,1),(2,3)} is not a heap.

Joining
When dom(hi) n dom(he) = & we write hy w hg for hy U ho.
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Heap predicates

A heap predicate H is a predicate on heaps.
i.e. if his a heap then H h is a proposition.

In Rocq: H : heap — Prop where Prop is the type of propositions.

Primitive heap predicates:

r

empty heap

‘P pure fact

[— v  singleton heap

H x H' separating conjunction

dzr, H  existential quantification
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Empty heap and pure facts

Definition:

m.m=g AP
r E rTrue1

Example: specification of “let a = 3 and b = a+1".

r

Before:
After: "‘a=3 A b=4"

Note: a and b are program variables and a and b are logical variables. In
reality a will be replaced by 3 in the rest of the program, or kept in an
environment, but it is convenient to name it a in proofs.
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Singleton heap

Definition:
l—>v = dm. m={({,0)} Al#null

Example: specification of “let r = ref 3".

Before:
After: r—3
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Singleton heap

Definition:
l—>v = dm. m={({,0)} Al#null

Example: specification of “let r = ref 3".

Before:
After: r—3

Example: specification of “incr s”.

Before: s—n for some n
After: s— (n+1)
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Separating conjunction

The heap predicate H; * Hs characterizes a heap made of two disjoint
parts, one that satisfies H; and one that satisfies Ho.

Example: (r — 3) * (s — 4) describes two distinct reference cells.
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Separating conjunction

The heap predicate H; * Hs characterizes a heap made of two disjoint
parts, one that satisfies H; and one that satisfies Ho.

Example: (r — 3) * (s — 4) describes two distinct reference cells.

Definition:
my L mo
m=mi1Ymy
Hl * HQ = Am. Elmlmg.
Hymy
Hymo
where:
my L mg = dommi ndommy =
miwmsg = M UmMmo when m; L mo
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Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

ra FO=1'I
T=1" MT=1"+«0=1"
12 I-2)x1=1
(1—2)#(L—3) (1—2)* (2o 1)
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Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

o %) =1 impossible
1=1 %) MT=1"=*"0=1 impossible
12 1>2)+1=1

(1—2)x(1—3)

(1—2)%(2—1)
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Heaps and heap predicates

Exercise: give heaps satisfying the following heap predicates

o %) =1 impossible
1=1 %) MT=1"=*"0=1 impossible
12 (1L2)] | A=2)+1=1] {@12)]

(1 2)% (1~ 3) |impossible | (1—2)=*(2—1) | {(1,2),(2,1)}
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Heaps and heap predicates

Exercise:
@ specify: let r = ref 5 and s = ref 3 and t = r.
@ specify the state after subsequently executing: incr r.
© specify the state after subsequently executing: incr t.
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Heaps and heap predicates

Exercise:
© specify: let r = ref 5 and s = ref 3 and t

@ specify the state after subsequently executing: incr r.
© specify the state after subsequently executing: incr t.

Incorrect answer: (r — 5) * (s — 3) * (t — 5).

=TI.
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Heaps and heap predicates

Exercise:

© specify: let r = ref 5 and s = ref 3 and t

@ specify the state after subsequently executing: incr r.
© specify the state after subsequently executing: incr t.

Incorrect answer: (r — 5) * (s — 3) * (t — 5).

Correct answer:

QO (r—5)=(s—3)="t=r
Q@ (r—6)x(s—3)="t=r
Q@ (roT)x(s—3)x"t=r
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Record fields

Heap predicate describing the field f of a record at address p:
pf—v = (p+offset of f)— v

Example:

\hd tl p—x * p_l,_l,_,p/

sometimes written
phd—z = ptl—yp
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Representation of list cells

p—(z,p) = poax (p+1)—yp

In general
pr— (Vo,...,Up) = Py % ... % (p+n)— o,
Sometimes, to specify the names of the field, we write:

p~{hd=z; tl=p'} = phd—2z = ptl—yp
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Existential quantification

Definition:
dx.H = XMn.dz. Hm
Compare:
(3z.P) : Prop when (P : Prop)

(3x. H) : heap — Prop when (H : heap — Prop)
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Existential quantification

Exercise: give heaps satisfying the following heap predicates

dz. (1 — z)’ Az. (11— 2)* (2— x) Iz z=x+1
. (z—ax+1)*(z+1— 2) Jz. 1z
Az. (z— 1) * (z — 2) iP."'P' iH. H
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Existential quantification

Exercise: give heaps satisfying the following heap predicates

dz. (1 — z)’ Az. (11— 2)* (2— x) Jz. z=z+1"
nonsense {(1,7),(2,7)} impossible
. (z—ax+1)*(z+1— 2) Jx.1— 2
{(1,2),(2,1)} {(1,2)}
Az. (z— 1) * (z — 2) iP."'P' iH. H
impossible [0} any heap

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 20/85



Summary

r
I'P'I

l—wv

Hl*HQ

dx. H

Jean-Marie Madiot (Inria Paris)

True’

Am.

m

Am

m

.m = {(l,v)} Al #null

. Elmlmz.

.dx. Hm

Separation Logic 1

m=g A P

mi1 L mo

m =mi1 v msm

Hymy
Hymeo
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Chapter 2

Representation Predicate for Lists
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Linked lists

Example of an assertion about a linked list containing [8; 5; 6]

p— (8,p1) * p1— (5,p2) * pa— (6,null)

@p @p, @p,

Lele] [=]w] [

null

We want it to work for any intermediate pointers, so we write instead:

pi. p— (8,p1) * Ipa. p1— (5,p2) * p2 — (6,null)

p

N\
DEROESDL
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Representation predicate for lists

Where L is a “logical” list (e.g. a Rocq list), we write:

p ~» MList L = match L with
|nil = "p=null’
|z L = . p—(x,p)« p/ ~ MList L/

T e T L 3

Note: p ~» MList L is notation for MList L p.
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Implementation of mutable lists in OCaml

Mutable lists (C-style), expressed in OCaml extended with null pointers.

type ’a cell = { mutable hd : ’a;
mutable tl : ’a cell }

p

N\
DEROESDT

The we write just:
{hd=8; t1={hd=5; t1={hd=26; t1 = null } } }

but behind, there are 3 allocations and 6 assignments
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Separation properties

p1 ~ MList L1 % pg ~ MList Ly % p3 ~» MList Lg

Separation enforces: no cycles, and no sharing.
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Union heap predicate

p ~ MList L

Equivalent to:

p ~ MList L

where:

= match Lwith
|nil = "p=null’
|z L = Ip'.p— (x,p') * p' ~ MList L'

= "L=nil A p=null
v (JzL'p. 'L=x:=L"
« pr> (x,p') * p' ~ MList L')

HivHy = Mn Hmv Hm
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List construction

let rec build n v =
if n = 0 then null else
let p’ = build (n-1) v in
{hd =v; tl =p’ }
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List construction

let rec build n v =
if n = 0 then null else
let p’ = build (n-1) v in
{hd =v; tl =p’ }

Pre-condition:

Post-condition, where p denotes the result:

AL. p~» MList L * ‘lengthL =n A (Vi.0<i<n= L[i] =v)’
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List construction: proof (1/2)

AL. p~> MList L = “lengthL =n A (Vi.0<i<n= L[i] =v)’

Case n = 0. We have p = null. We take L = nil.

To produce p ~» MList L, we need to produce null ~» MList nil.
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List construction: proof (1/2)

AL. p~> MList L = “lengthL =n A (Vi.0<i<n= L[i] =v)’

Case n = 0. We have p = null. We take L = nil.
To produce p ~» MList L, we need to produce null ~» MList nil. We use:

(null ~~ MListnil) = "'
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List construction: proof (2/2)

AL. p~ MListL % ‘lengthL =n A (Vi.0<i<n= L[i] =v)’

Case n > 0. By IH, we have: p’ ~ MList L/, with L’ of length n — 1.
To produce p ~» MList L, we have p’ ~» MList L' and p — (v, p’).

p p’

T e [ T3 T3 ]

(3. p— (v,p') * p' ~ MListL') = p~» MList (v :: L)
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In-place list reversal: code

let reverse pO =
let r = ref pO in
let s = ref null in
while !r <> null do
let p = !r in

r := p.tl;
p-tl <- Is;
s = p;
done;
I's
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In-place list reversal: code

let reverse pO =
let r = ref pO in
let s = ref null in
while !r <> null do
let p = !r in

r := p.tl;
p-tl <- Is;
s = p;
done;
I's
Exercise:

@ Specify the state before the loop.
@ Specify the state after the loop.
© Specify the loop invariant.
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In-place list reversal: invariants

Before the loop:
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In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L
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In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

After the loop:
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In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

dg. r — null * s+— g % g~ MList (rev L)
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In-place list reversal: invariants

Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

dg. r — null * s+— g % g~ MList (rev L)

Loop invariant:
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In-place list reversal: invariants
Before the loop:

r+—po * s— null * pg~> MList L

After the loop:

dg. r — null * s+— g % g~ MList (rev L)

Loop invariant:

dpgLiLy. 1T~ p % p~> MList Lo
* §+— q * g~ MList L1
* 'L=revLi+H Ly
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In-place list reversal: proof (1/2)

Invariant:
dpgLiLa. r—>p * s—q

# p~> MList Ly % g ~> MList Ly
* [ = rev Ly —H—ng

Initial state implies the invariant: take p = pg and L1 = nil and Lo = L.

r+— po * po ~» MList L % s+ null % null ~ MListnil * "L = revnil+L’
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In-place list reversal: proof (1/2)

Invariant:
dpgLiLa. r—>p x s+ q

#x p~> MList Ly % g ~» MList Ly
* "L =revLi4+Lo'

Initial state implies the invariant: take p = pg and L1 = nil and Lo = L.

r+— po * po ~» MList L % s+ null % null ~ MListnil * "L = revnil+L’

Invariant implies the final state: exploit p = null.

r +— null % null ~ MList Ly * s+ q * g~ MList Ly * "L = rev L1+Lo'
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In-place list reversal: proof (1/2)

Invariant:
dpgLiLa. r—>p x s+ q

#x p~> MList Ly % g ~» MList Ly
* "L =revLi4+Lo'

Initial state implies the invariant: take p = pg and L1 = nil and Lo = L.

r+— po * po ~» MList L % s+ null % null ~ MListnil * "L = revnil+L’

Invariant implies the final state: exploit p = null.
r +— null % null ~ MList Ly * s+ q * g~ MList Ly * "L = rev L1+Lo'
Derive Lo = nil using:

(null ~» MList L) = "L = nil’
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Conversion rule for empty lists

p~ MList L = match L with

[nil = "p=null’

|z L' = . p (x,p") % p ~ MList L’

Let us prove: (null ~ MList L) = "L = nil’

— From right to left: we may assume L = nil, thus:

‘nil = nil" = "' = (null ~ MListnil)
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Conversion rule for empty lists

p~> MList L = match L with
[nil = "p=null’
|z L' = . p (x,p") % p ~ MList L’
Let us prove: (null ~» MList L) = "L = nil’

— From right to left: we may assume L = nil, thus:

‘nil = nil" = "' = (null ~ MListnil)

— From left to right: if L = nil, then easy; otherwise L = z :: L’ and:
null ~ MList (z :: L') = (3p. null — (z,p’) = p’ ~» MList L")

contradicts the fact that no data can be allocated at the null address.
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In-place list reversal: proof (2/2)

Transition when p # null:

p~ MList Ly * ¢ ~» MList L1 * "L = rev L+ Lo’
to
AxLlp’. Lo =x: Ly = p— (z,p) = p’ ~ MList L
% g~ MList Ly « "L =rev L+ Ly
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In-place list reversal: proof (2/2)

Transition when p # null:

p~ MList Ly * ¢ ~» MList L1 * "L = rev L+ Lo’
to
xLlop’. Lo =x Ly + prs (x,p) * p' ~» MList Lj
% g~ MList Ly « "L =rev L+ Ly

After update of p.tl to the value ¢:

p ~ {{hd=z; tI=¢q[} * ¢ ~~ MList L,
# p/ ~» MList L "L = rev Ly +(x :: L))’
to
g~ MList (z :: L1) * p/ ~> MList L, % "L = rev (z :: L1) -+ Lg’
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Conversion rules for nonempty lists

p~» MList L = match Lwith
|nil = "p=null’
|z L = . p—(z,p)
* p/ ~» MList L’

p~ MListL = 'p#null' = 3JzL’p. ‘L=z:L"

* pr (z,p)
* p/ ~» MList L/
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Summary

p ~+ MList L = match L with
|nil = "p=null’
|z L' = Ap'. p—(z,p)
x p/ ~» MList L/
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Break!
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Chapter 3

Representation Predicate for List Segments
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Length of a mutable list using a while loop

let rec mlength (p:’a cell) =

let £ = ref p in
let t = ref 0 in
while !f != null do
incr t;
f = ('f).t1;
done;
It
Exercise:

© Specify the state before the loop.

@ Specify the state after the loop.

© Draw a picture describing a state during the loop.
@ Try to state a loop invariant. What do you need?
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Mlength: initial and final states

Before the loop:
(p~» MList L) = (f = p) * (t—0)

After the loop:
(p ~ MList L) = (f — null) = (¢ +— length L)
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Mlength: loop invariant

—fa] o —{z]

\

AL T THL A A I T

Ly Lo

Loop invariant:
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Mlength: loop invariant

1__{;J t——+II
AL T THL A A I T

Ly Lo

Loop invariant:

AL, Log. '"L=Li+HLy * (t—lengthLy) = (f — q)
# (p~> MlistSegq L1) * (q ~» MList Ly)
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Representation predicate for list segments

p ~> MList L = match L with
|nil = "p=null’
|z L' = . p— (z,p)
x p' ~ MList L/

S EENERNT

Exercise: generalize MList to define p ~> MlistSeg g L., where L denotes
the list of items in the list segment from p (inclusive) to ¢ (exclusive).
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Representation predicate for list segments

p ~> MList L = match L with
|nil = "p=null’
|z L' = . p— (z,p)
x p/ ~ MList L’

S EENERNT

Exercise: generalize MList to define p ~> MlistSeg g L., where L denotes
the list of items in the list segment from p (inclusive) to ¢ (exclusive).

p ~ MlistSegq . = match L with
Inil = p=¢
|z L' = . p— (z,9)
o ’ x p' ~ MlistSeg ¢ L’
emark:
p~> MList L = p ~» MlistSegnull L
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Mlength: proof
T_.IE\’ 1_.|E|
AL T T A 3o 3 T

Ly Lo

Enter: Li=nlALy=LAg=p

ra

= (p ~» MlistSeg p nil)
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Mlength: proof
T_.IE\’ 1_.|E|
AL T T A 3o 3 T

Ly Lo

Enter: Li=nlALy=LAg=p

ra

= (p ~» MlistSeg p nil)

Exit: Li=L A Ly=nil A ¢g=null
(p ~» MlistSegnull L) = (p ~» MList L)
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Mlength: proof
T_.IE\’ 1_.|E|
AL T T A 3o 3 T

L, L,
Enter: Li=nlAL=LAqg=p
"' = (p ~ MlistSeg pnil)
Exit: Li=L A Ly=nil A ¢g=null
(p ~» MlistSegnull L) = (p ~» MList L)
Step: Lo=x LY A g#null A gtl=¢

dq. p ~ MlistSegq L1 * q ~ {{hd=x; tI=¢'|}
= p~ MlistSegq' (L1 +x :: nil)
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Splitting rules for list segments

< /

p ~ MlistSegq (z :: L) = Ip'. p— (z,p') = p' ~ MlistSegq L’
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Splitting rules for list segments

e
"”*tz*”c:a%m’“ 1

p ~ MlistSegq (z :: L) = Ip'. p— (z,p') = p' ~ MlistSegq L’

l’n

E‘_?r“)f i) d B s N B W ey

p ~» MlistSeg q (L +|-L2) = 3p'. p~ MlistSegp’' Ly
x p ~» MlistSegq Lo
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An implementation of mutable queues

p \ front back

‘xl ?

EpCEROESOENE
We implement a queue with two pointers to the front and back of the

same list segment, with the last cell storing dummy values allowing for less
branching (simpler and slightly faster)

type ’a queue = { mutable front : ’a cell;
mutable back : ’a cell; }

Exercise: define the representation predicate p ~ Queue L.
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An implementation of mutable queues

p \ front back

Xy

R OESOESDERE

We implement a queue with two pointers to the front and back of the
same list segment, with the last cell storing dummy values allowing for less
branching (simpler and slightly faster)

?

type ’a queue = { mutable front : ’a cell;
mutable back : ’a cell; }

Exercise: define the representation predicate p ~ Queue L.
p~ QueveL = 3fb. pw— (f,b) = f~> MlistSegbL = b— (_,_)

Alternative for the last cell: Jyq. b — (y,q)
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Summary

p ~» MlistSegq L = match L with
Inil = 'p=¢
|z L' = . p— (z,7)
x p ~» MlistSeg q L’

Split and merge of segments:

p~ MlistSegq (L1+Ls) = 3p'. p~ MlistSegp’ Ly
x p ~» MlistSegq Lo
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Chapter 4

Representation Predicate for Trees
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Implementation of a mutable binary trees

null

| 6 | null

Empty trees represented as null pointers. Nodes represented as records.

type node = {
mutable item : int;
mutable left : node;
mutable right : node; }

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

49 /85



Logical binary trees

Inductive tree : Type (=
| Leaf : tree
| Node : int — tree — tree — tree.

Example:

Node 3
(Node 2 Leaf Leaf) e

(Node 4 (Node 5 Leaf Leaf) 0 °

(Node 6 Leaf Leaf))
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Representation predicate for binary trees

T o
(T
N

E Lo

E

null [ null

null | null null | null

Representation predicate:

p ~> Mtree T
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Representation predicate for binary trees

p~+ MList L = match L with
|nil = "p=null’
|z L = . p—(x,p)
x p ~» MList L/

Exercise: define p ~» MtreeT.
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Representation predicate for binary trees

p~+ MList L = match L with
|nil = "p=null’
|z L = . p—(x,p)
* p/ ~» MList L’

Exercise: define p ~ MtreeT.

p ~» MtreeT = matchT with
| Leaf = "p = null’
|NodezT7 T = Ipipo.
p— (2,p1,p2)
*  pp ~> Mtree T}
x  po ~> MtreeTs
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Complete binary tree

p ~» MtreeDepthnT

describes a complete binary tree whose leaves are all at depth n.
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Complete binary tree (1/2)

p ~» MtreeT" = match T with
|Leaf = "p = null’
|Nodez T To = Ipipo.
p— (2,p1,p2)
x  pp ~ MtreeT}
x  po ~» Mtree'ls

Exercise: define p ~» MtreeDepth nT" by modifying p ~» MtreeT'.
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Complete binary tree (1/2), solution

p ~» MtreeDepthnT" = match T with
|Leaf = p=null A n=0"
|[NodezT1 T = Ipipe. 'n>0" =
p— (2,p1,p2)
# p1 ~» MtreeDepth (n — 1) T}
% pg ~> MtreeDepth (n — 1) T

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026 55/85



Complete binary tree (1/2), solution

p ~» MtreeDepthnT" = match T with
|Leaf = p=null A n=0"
|[NodezT1 T = Ipipe. 'n>0" =
p = (z,p1,p2)

# p1 ~» MtreeDepth (n — 1) T}
% pg ~> MtreeDepth (n — 1) T

p ~» MtreeDepthnT = matchn, T with
|O, Leaf = "p = null’
\Sm, NodexT1 T2 = Eﬂplpg.

p— (z,p1,p2)
% p1 ~» MtreeDepthm T}
% pg ~> MtreeDepth m 15

| .,_ = "False’
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Complete binary tree (2/2)

Exercise: give an alternative definition of “p ~» MtreeDepthnT", this
time by reusing the definition of p ~» Mtree T without modification.
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Complete binary tree (2/2)

Exercise: give an alternative definition of “p ~» MtreeDepthnT", this
time by reusing the definition of p ~» Mtree T without modification.

p ~ MtreeDepthnT = p~» MtreeT * "depthnT"

Inductive depth : int — tree — Prop =
| depth_leaf :
depth O Leaf
| depth_node : Vn x T1 T2,
depthn T1 —
depthn T2 —
depth (n+1) (Node x T1 T2).
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Complete binary tree of unspecified depth

p ~> MtreeDepthnT = (p ~» MtreeT) * "depthnT"

Exercise: define a predicate p ~~ MtreeCompleteT" for describing a
mutable complete binary tree, of some unspecified depth.
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Complete binary tree of unspecified depth

p ~> MtreeDepthnT = (p ~» MtreeT) * "depthnT"
Exercise: define a predicate p ~~ MtreeCompleteT" for describing a
mutable complete binary tree, of some unspecified depth.

Equivalent definitions for p ~~ MtreeComplete T"

Q@ dn. p ~» MtreeDepthn T
@ 3dn. (p~> MtreeT) * "depthnT"
Q@ (p~ MtreeT) * "In.depthnT"
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Binary search tree property

JEaY
AA

The proposition searchT' E asserts that the pure tree T' describes a valid
search tree and that E describes the set integers that it contains.

Inductive search : tree — set int —Prop =
| search_leaf :
search Leaf (J
| search_node : Vx T1 T2,
search T1 E1 —
search T2 E2 —
foreach (is_1t x) E1 —
foreach (is_gt x) E2 —
search (Node x T1 T2) ({x} UE1l UE2).
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Binary search tree predicate

Exercise: define a predicate p ~» MsearchTree E for describing a mutable
binary search tree storing the set of elements E.
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Binary search tree predicate

Exercise: define a predicate p ~» MsearchTree E for describing a mutable
binary search tree storing the set of elements E.

p ~ MsearchTree E = 3T. p ~ MtreeT = 'searchT E'
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Binary search tree predicate

Exercise: define a predicate p ~» MsearchTree E for describing a mutable
binary search tree storing the set of elements E.

p ~ MsearchTree E = 3T. p ~ MtreeT = 'searchT E'

For example, a call “add x p" can be specified as follows:
@ pre-condition: p ~» MsearchTree E

@ post-condition: p ~» MsearchTree (E U {z})
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Summary

Common representation predicate for all binary trees:

p ~> MtreeT = matchT with
| Leaf = "p = null’
[Nodex Th To = Ipipo.

p+— (2,p1,p2)
% p1 ~> MtreeT] * pg ~~ MtreeTs

Invariants are expressed on the pure trees:

p ~ MsearchTree E = 3T. p ~ MtreeT = 'searchT E'

Operations are specified in terms of the model. For example, add x p

changes p ~» MsearchTree E into p ~» MsearchTree (E U {z}).
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Chapter 5

Structures with sharing
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The union-find data structure

938 mg

::f"Ei’
GRals .

\
&
A

type node = node ref

Implements an equivalence relation S of type: loc — loc — Prop.

Sab < a and b are two valid nodes with the same root

Remark: S aa holds iff a is the location of an existing node.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

62/85



Representation of union-find cells

QFE R
3@ r (.
@P P &
g gg\ (D)

P1—q1) * (P2—q2) * ... % (Pn— qn)
= ®(pi7qi)EG (pi — Qi)

where G is a finite map from locations to locations.
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Invariants of union-find
[ @ [+]

) W

iy yl

Predicate “root Gar" asserts that in the graph GG, node a has root 7.

Inductive root : fmap loc loc — loc —loc — Prop :=
| root_init : VG x,
binds G x null —
root G x x
| root_step: VG x y r,
binds Gxy —
y #null —
rootGyr —
root Gxr.
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Specification of the union-find structure

m@@ B{FJJZ
RYe
EZJM

A
g L_é [gw

(=) (D)

UnionFindS = 3G. (@(p’q)eG p—q)
* 'VYaedom@G. Ir. rootGar'
* 'Yab. Sab < Ir. rootGar A rootGbr’
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Specification of the union-find structure

RER | E R

W
\ AN S
[JB NN T
3 J_\EJX/”

Q‘P vv\

UnionFindS = 3G. (@)(p’q)eG p—q)
* 'VYa e domG@G. Ir. rootGar’

* 'Yab. Sab < 3Ir.rootGar A rootGbr'

is_equiv a b" is specified as follows:

For example, “let x
@ pre-condition: "Saa A Sbb' * UnionFind S

@ post-condition: "z = true <& Sab' * UnionFind S

Separation Logic 1 February 3, 2026
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Summary

Iterated separating conjunction, written (0.

For Union-Find:

® p—gq

(p,9)eG
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Chapter 6

Separation Logic Triples
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Separation Logic triples
A term t is specified using a Separation Logic triple of the form:

(HYt {\z. H}

@ H describes the initial heap
@ t is the term being specified
@ x is a name for the value produced by ¢

@ H' describes the final heap and the output value x.
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Separation Logic triples
A term t is specified using a Separation Logic triple of the form:

(H} t [\ H')

H describes the initial heap
t is the term being specified

x is a name for the value produced by ¢

H' describes the final heap and the output value z.

{H}t{Q}

H (pre-condition) is a predicate of type: heap — Prop

t has an ML type interpreted in the logic as type A

Q (post-condition) is a predicate of type: A — heap — Prop.
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Examples of triples

Example 1: o
{""} (ref 3) {Mr. r— 3}
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Examples of triples

Example 1: o
{""} (ref 3) {Mr. r— 3}

Example 2: (7} (3) D w = 37
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Examples of triples

Example 1:
xame {71 (ret 3) {Ar. 1 3}
Example 2: o . |
{7y (3) { .z =3"}
Example 3:

{r—3}('r) {Az. ‘x=3"%(r—3)}
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Examples of triples

Example 1:
{""} (ref 3) {\r. r — 3}
Example 2: o . |
{""}(3) {A\x.z=3"}
Example 3: . §
{r—3}('r) {Az. ‘x=3"%(r—3)}
Example 4:

{r — 3} (incr r) {A\_. (r — 4)}

Remark: in “A_. (r — 4)" we do not care about the return value.
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Specification of functions

A function f is specified using a triple of the form:

Va. {H} (fa){\x.H'}

H is the pre-condition
f is the function
a is the value of the argument

2 is a name for the return value

H' is the post-condition

Example:
Vrn. {r+—n} (incr r) {A\.. r— (n+ 1)}
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Specification of operations on memory cells

Exercise: specify the primitive operations on references.

(ref v)

(1z)
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Specification of operations on memory cells

Exercise: specify the primitive operations on references.

(ref v)

(1z)

Solution: Yo. {7} (ref v) {Ar. (r — )}

Vrv. {r—v} (tr) {Az. "z =0"* (r—v)}

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

71/85



Specification of operations on memory cells

Exercise: specify the primitive operations on references.

(ref v)

(1z)

Solution: Yo. {7} (ref v) {Ar. (r — )}

Vrv. {r—v} (tr) {Az. "z =0"* (r—v)}

Vrow. {r—w}(r :=v){A.(r—0v)}
Vro.  {Jw. r—w} (r := v) {A.(r—o)}
Vro. {fr—-}(r :=v){A.(r—wv)}

where (1 — -) = Jw. r — w.
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Specification of partial functions

Presentation 1:

Vn. {'n>=0"} (factn) {A\z. "z = n!"}

Presentation 2:

Vn.n =0 = {""} (factn) {\z. "z = n!"}

distinguish:
fact n: the program called with argument n

n!: the mathematical quantity
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Specification of operations on arrays

Exercise: specify operations on arrays in terms of p ~» Array L
(assuming Array is already defined).

Notation:
Lli]
L[i:=v]
L]
7€ dom L

Jean-Marie Madiot (Inria Paris)

Array.get p i)

(
Array.set iv
(Array.set p i v)
(Array.length p)
(

Array.create n v)

i-th element of the list L
= copy of L with v at index ¢
= length of L

= 0K i<i|L|

Separation Logic 1 February 3, 2026
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Specification of operations on arrays

ViLp iedomL = {p~ Array L}
(Array.get P i)
{Mz. "z = L[i]" = p~> Array L}

ViLp iedomL = {p~ Array L}
(Array.set p i v)
{A_. p~ Array (L[i := v])}
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Specification of operations on arrays

ViLp iedomL = {p~ Array L}
(Array.get P i)
{Mz. "z = L[i]" = p~> Array L}

ViLp iedomL = {p~ Array L}
(Array.set p i v)
{A_. p~ Array (L[i := v])}

VpL {p ~ Array L}
(Array.length p)
{An. 'n=|L|" = p~ Array L}

Voo n=0 = {'}
(Array.create n v)
{Ap. IL. (p ~» Array L) = "|L| = n'
% 'ViedomL. L[i] =v'}
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Interpretation of triples (1/3)

Assume for now that triples describe the entire state.
A triple {H} t {\xz. H'} is interpreted in total correctness as:
Vm. Hm = Jv.3Im’. <t,m>| <v,m'> A ([x —»v]H)m'

(assuming a deterministic semantics)
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Interpretation of triples (1/3)

Assume for now that triples describe the entire state.
A triple {H} t {\xz. H'} is interpreted in total correctness as:
Vm. Hm = Jv.3Im’. <t,m>| <v,m'> A ([x —»v]H)m'

(assuming a deterministic semantics)

How is a triple {H} t {Q} interpreted?
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Interpretation of triples (1/3)

Assume for now that triples describe the entire state.
A triple {H} t {\xz. H'} is interpreted in total correctness as:
Vm. Hm = Jv.3Im’. <t,m>| <v,m'> A ([x —»v]H)m'
(assuming a deterministic semantics)
How is a triple {H} t {Q} interpreted?
Let @ = \x. H'. We have Qv = [x — v] H'. Thus, the interpretation is:

VYm. Hm = Jv.3m’. <t,m>| <v,m'> A Qum/
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Interpretation of triples (2/3)

In Separation Logic, a triple describes only a part m; of the heap.
The rest of the heap, call it mso, is assumed to remain unchanged.

Recall that:
mi; L mg = (domm; ndommsg = )

How is a triple {H} t {Q} interpreted?

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

76 /85



Interpretation of triples (2/3)

In Separation Logic, a triple describes only a part m; of the heap.
The rest of the heap, call it mso, is assumed to remain unchanged.

Recall that:
eca 2 mi; L mg = (domm; ndommsg = )

How is a triple {H} t {Q} interpreted?

<t,m1 wmo> | <v,m}| wmo>
Hmy ,
Ymqi ma. = Jv.Im]. Qumj
m1 L mo ,
my L mo
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Function with garbage collection

What is the natural specification of function myref?

let myref x =
let r = ref x in
let s = ref r in
r

What is missing from our current interpretation of triple?
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Function with garbage collection

What is the natural specification of function myref?

let myref x =
let r = ref x in
let s
r

ref r in

What is missing from our current interpretation of triple?

From:

{""} (myref x) {Ar. r—x % ds.s — 1}
To:

{""} (myref x) {\r. r— x}

We need the post-condition to describe only a subset of the output heap.
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Interpretation of triples (3/3)

Let mg3 describe the garbage heap, that is, the part of the final heap that
corresponds either to cells from m or to cells allocated during the
evaluation of ¢, and that are not described by the post-condition.

We interpret a triple {H} t {Q} as:

<t,mi wmg> | <v,m} wme wms>

Hmy / /

Ymq ms. = Juvmims{ Qumj
ma 1 mo ,

my L ma L mg
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Interpretation of triples (3/3), revisited

We introduce a new heap predicate, written GC, that holds of any heap.
GC = dH. H

(sometimes just called True, because it is equivalent to Am.True, but it
looks too much like "True'.)
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Interpretation of triples (3/3), revisited

We introduce a new heap predicate, written GC, that holds of any heap.
GC = dH. H
(sometimes just called True, because it is equivalent to Am.True, but it

looks too much like "True'.)

Definition (Separation Logic Triple)
We define {H} ¢t {Q} as:
VH'm. (H =+« H)m = 3Jom’. <t,m> || <v,m'> A (Quv = H' « GC)m/
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Summary

Separation Logic triple:
{H} t {\z. H"}

Specification of a function:

Va.V.... {H} (fa){\z.H'}

Specification of primitive functions:

Vo.  {""} (ref v) {\r. (r—v)}
Vrv. {re—uov} (i) {da. "z=v"%(r—ov)}

Vrv. {r—-}(r := v) {\..(r—v)}
Interpretation of triples: see definition.

Jean-Marie Madiot (Inria Paris) Separation Logic 1 February 3, 2026

80/85



Chapter 7
The Frame Rule
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Preservation of independent state

We have:
{7" — 2} (incr r) {)\_. T 3}

We also have:

{r—2=%s— 7} (incr r) {A\_. r—3 % s+ 7}
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Preservation of independent state

We have:
{7” +— 2} (incr r) {)\_. T 3}

We also have:

{r—2=%s— 7} (incr r) {A\_. r—3 % s+ 7}

More generally:

{r—2 % H} (incr r) {\.. r—> 3 = H}
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The frame rule

Principle: a triple remains valid when both the pre-condition and
the post-condition are extended with a same heap predicate.

General form:

(Hy} t o HY)

FRAME
{Hl * Hz} t {)\IH{ * Hg}
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Frame rule and allocation

We have:
{""} (ref 3) {Ar. (r—3)}

By the frame rule, we have:

{s +— 5} (ref 3) {A\r. (r—3) = (s —5)}
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Frame rule and allocation
We have:

{""} (ref 3) {Ar. (r—3)}
By the frame rule, we have:

{s +— 5} (ref 3) {A\r. (r—3) = (s —5)}

This post-condition ensures r # s.

The reference cell r is thus guaranteed to be distinct from any cell that
might exist prior to the allocation of r.
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The end!
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