TD 1: λ -calculus and encodings of data types

jean-marie.madiot@ens-lyon.org

Exercise 1 λ -calculus

The λ -calculus is defined by the following syntax:

 $M, N := x \mid \lambda x. M \mid MN$ where x is a variable

and the following rewriting rule (β reduction):

$$(\lambda x. M) N \to M[N/x]$$
.

The symmetric reflexive transitive closure of \rightarrow is written $=_{\beta}$. Here are some usual terms:

 $I := \lambda x. \ x \qquad K := \lambda x \lambda y. \ x \qquad S := \lambda x \lambda y \lambda z. \ x \ z \ (y \ z) \qquad \Delta := \lambda x. \ x \ x \qquad \Omega := \Delta \Delta$

- 1. Reduce the λ -terms $\Delta I I$ and Ω .
- 2. Give the reduction graphs of the terms: S K K, $\Delta (I I)$ and $K I \Omega$.

Exercise 2 Pairs and sum types

Give λ -terms for

such that:

$\langle -, - \rangle$	pair constructor	ι_1	first injection
π_1	first projection	ι_2	second injection
π_2	second projection	case	matching
$\pi_1 \langle x, y \rangle =_\beta x$	$, \qquad \pi_2 \langle x, y \rangle =_\beta y ,$	$\operatorname{case}\left(\iota_{1} x\right)$	$f g =_{\beta} f x$, $case(\iota_2 x) f g =_{\beta} g x$.

Exercise 3 Church encodings

The Church encoding of a natural number n is the term $\overline{n} := \lambda f x \cdot f^n x$ (n iterations of the function f at x).

- 1. Write $\overline{0}$ and $\overline{3}$.
- 2. Write a successor function: $S \overline{n} =_{\beta} \overline{n+1}$.
- 3. Write an iterator, i.e. a term Iter such that for all terms M, N, we have

Iter $M \ N \ \overline{0} =_{\beta} M$ and Iter $M \ N \ (S \ \overline{n}) =_{\beta} N$ (Iter $M \ N \ \overline{n})$.

- 4. Write terms encoding addition and multiplication.
- 5. Which function is represented by the term $\overline{n}\overline{m}$?

We represent booleans by $T := \lambda xy x$ and $F := \lambda xy y$.

- 6. Give an encoding of if then else.
- 7. How would you encode pairs?
- 8. Suggest a term encoding the predecessor function.

Exercise 4 λ -calculus II

- 1. Characterize λ -terms in β normal form.
- 2. Restrict β reduction in order to implement call by name and call by value. Find a λ -term distinguishing these two reduction strategies.

Exercise 5 Barendregt natural numbers

The Barendregt natural numbers $\lceil n \rceil$ are defined by:

 $\lceil 0 \rceil := I \qquad \qquad \lceil n+1 \rceil := \lambda k.k \ \mathbf{F} \lceil n \rceil$

- 1. Implement the functions successor, predecessor, and conditional (if-zero).
- 2. Suggest an implementation of addition.

Exercise 6 Lists and trees

We want to encode lists in λ -calculus by terms of the form $\lambda c.\lambda n.M[c, n]$. Intuitively, a list is a function with two arguments: the first is a function in the case of a non-empty list, the second is some value in the case of the empty list. For instance the list ["Bacon"; "Lettuce"; "Tomato"] will be represented by:

 $\lambda c. \lambda n. (c \text{ "Bacon"} (c \text{ "Lettuce"} (c \text{ "Tomato"} n)))$.

- 1. Write the operators nil and cons.
- 2. Write an *iterator* fold such that

fold f u nil $=_{\beta} u$ and fold f u (cons a l) $=_{\beta} f a$ (fold f u l).

- 3. Write terms for the concatenation and mirror functions.
- 4. Suggest an encoding for binary trees.